
USING GENERATIVE DEEP LEARNING TO CREATE

HIGH-QUALITY MODELS FROM 3D SCANS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Angela Dai

August 2018

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/xw320vd9754

© 2018 by Angela Dai. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/xw320vd9754

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Pat Hanrahan, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Silvio Savarese

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Thomas Funkhouser,

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

With recent developments in both commodity range sensors as well as mixed reality

devices (such as the Microsoft Kinect, Microsoft Hololens, Intel RealSense, Apple

iPhone X, etc.), capturing and creating 3D models of the world around us has be-

come increasingly important. As the world around us lives in a three-dimensional

space, such 3D models will not only facilitate capture and display for content cre-

ation but also provide a basis for fundamental scene understanding, from semantic

understanding to virtual interactions.

Leveraging data from commodity range sensors to reconstruct 3D scans of a scene

has shown significant promise towards 3D model creation of real-world environments.

However, the quality of reconstructed 3D scans has yet to reach that of artist-created

3D models – in particular, 3D scans always suffer from incompleteness, due to the

many occlusions in real-world scenes as well as physical limitations of range sensors.

Such incomplete 3D models are both unsuitable visually, and moreover, provides only

a limited basis for higher-level scene reasoning (e.g., virtual interactions in mixed

reality scenarios will not be accurate in unknown or missing regions).

This work focuses on the task of scan completion, that is, from a 3D scan with

partial geometry due to occlusions and scanning patterns, we aim to infer the missing

geometry. We introduce a generative formulation for scan completion, leveraging

deep learning techniques to create high-quality, complete models from 3D scans. We

approach this problem as a conditional generative task, where we condition on an

input partial scan and aim to learn ‘part’-wise similarity between scans to infer the

complete model. First, we begin by focusing on the more constrained problem of

completing scans of isolated shapes. We then expand upon this to design a generative

iv

approach for completion of general 3D scans of arbitrary scenes, directly addressing

the challenge of varying scene sizes in 3D. This not only provides scan completion

at scale, producing geometrically complete 3D models, but also provides a basis for

higher-level scene reasoning such as that required for virtual interactions or physical

simulations.

v

Acknowledgments

My time at Stanford has been uniquely defined by both the support and advice that

Pat has given me as my advisor, as well as an equal amount of freedom to pursue my

ideas and drive them forward. He makes research and running a group look bright

and effortless; it’s truly admirable, and I can only hope to strive for a fraction of it.

I’m very grateful to have had the opportunity to have Pat as my advisor.

I also wish to thank Tom Funkhouser, Silvio Savarese, Leo Guibas, and Dan

Yamins for serving on my orals committee. Tom has given me support and advice

from my undergraduate time at Princeton, and I am both happy and lucky to have

had the chance to work with him again. Leo offers great wisdom, always providing

new perspectives, and advice from Silvio is highly valued. Without my friends and

collaborators, I would not be here. Matthias Nießner’s guidance has helped shaped

and inspired my pursuit into capturing 3D models of the world, and I’m so grateful

for the time and mentorship of a clueless first-year student. Manolis Savva and Angel

Chang have contributed invaluably towards both research ideas and projects, as well

as helped to teach me a great deal about making research happen – and planning

ahead for it. I’d also like to thank the amazing set of people who have made day-to-day

research much more fun along with their insightful advice: Michael Zollhöfer, Justus

Thies, Christian Theobalt, Daniel Ritchie, and Feng Xie (who helped jumpstart my

interest in graphics many years ago).

I would also like to thank Professor Michael J. Flynn, whose Stanford Graduate

Fellowship has supported me throughout my time at Stanford, and given me invalu-

able freedom to explore my ideas and research. I’m very grateful for the financial

support from Google Tango, and in particular Jürgen Strum and Martin Bokeloh,

vi

who have also become wonderful collaborators.

Finally, thank you to Mom, Dad, and Adam for your love and support. You’ve

been my strongest supporters, and I’m so grateful for your unceasing support and

encouragement throughout my endeavors.

vii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Why 3D Scans? . 3

1.2 The Challenge of Incompleteness . 4

1.3 Learning to Complete 3D Scans . 6

1.4 Dissertation Structure . 8

2 Background 9

2.1 Real-Time 3D Reconstruction . 10

2.2 Synthetic 3D Model Datasets . 13

2.3 3D Shape and Scene Completion . 14

3 Acquiring 3D Scans 17

3.1 Large-Scale 3D Scanning . 18

3.2 Globally-Consistent Tracking . 19

3.2.1 Global Pose Alignment . 20

3.2.2 Hierarchical Optimization . 21

3.2.3 Pose Alignment as Energy Optimization 23

3.3 Interactive Reconstruction . 25

3.3.1 Integration and De-integration 26

3.4 Reconstruction Results . 26

viii

3.4.1 Reconstructing a Large-Scale Dataset of 3D scans 31

3.5 Discussion . 31

4 Formulating Scan Completion as a Generative Task for 3D Shapes 33

4.1 A Generative Model for Predicting Coarse Completed Global Structure 34

4.1.1 Network Architecture . 35

4.1.2 Generating Supervised Training Data 36

4.2 Evaluation . 37

4.2.1 Evaluation Metrics . 39

4.2.2 Comparison to Previous Work 39

4.2.3 Benefit of Completion for Classification 41

4.2.4 Ablation Study . 41

4.2.5 Effect of Data Representation 45

4.2.6 Results on Real Shapes . 46

4.3 Discussion . 48

5 A Generative Model for Scan Completion for Large-Scale Scenes 49

5.1 Network Design . 51

5.1.1 Increasing the Receptive Field 53

5.2 Decoupling Train and Test Sizes . 54

5.3 Generating Supervised Training Data 54

5.4 Evaluation . 57

5.4.1 Evaluation Metric . 57

5.4.2 Ablation Study . 58

5.4.3 Results on Synthetic Scenes 59

5.4.4 Results on Real Scenes . 62

5.5 Other Applications of ScanComplete: Semantic Segmentation 63

5.6 Discussion . 67

6 Conclusions 69

A BundleFusion Experiment Details 72

ix

B Acquiring a Large-Scale Dataset of 3D Scans 77

B.1 Data Acquisition . 79

B.1.1 RGB-D Scanning . 80

B.1.2 Surface Reconstruction . 81

B.2 Data Annotation . 83

B.3 Impact of Real-world Data for 3D Semantic Understanding 85

B.3.1 3D Object Classification . 85

B.3.2 3D Semantic Scene Segmentation 87

B.4 Creating a 2D/3D Benchmark . 90

Bibliography 92

x

List of Tables

4.1 Quantitative shape completion results on synthetic data 39

4.2 Effect of 3D-EPN predictions on classification and shape retrieval tasks 41

4.3 Network variants . 42

4.4 Evaluation of single vs multi-class training 43

4.5 Quantitative evaluation of the surface representation used by our 3D-

EPN . 46

5.1 Scene completion ablation study . 58

5.2 Quantitative scene completion results 62

5.3 Semantic labeling accuracy on SUNCG scenes 65

A.1 BundleFusion memory consumption 74

A.2 Loop closure precision and recall . 75

B.1 Overview of RGB-D datasets for 3D reconstruction and semantic scene

understanding. 79

B.2 3D object classification benchmark performance. Percentages give the

classification accuracy over all models in each test set (average instance

accuracy). 87
B.3 3D semantic scene segmentation accuracy on ScanNet test scenes. . . 89

xi

List of Figures

1.1 3D scan quality and incompleteness 3

1.2 3D scan incompleteness of the ScanNet dataset 6

3.1 BundleFusion pipeline . 18

3.2 Loop closure with BundleFusion . 25

3.3 Large-scale reconstruction results . 27

3.4 Qualitative comparison to state-of-the-art reconstruction approaches . 28

3.5 Performance evaluation . 29

3.6 Recovery from tracking failure . 29

3.7 Comparison to VoxelHashing . 30

3.8 Novice vs Expert Scan Quality . 32

4.1 3D Encoder-Predictor Network architecture 35

4.2 Shape completion results . 38

4.3 Shape completion results on ShapeNet 40

4.4 Quantitative shape completion evaluation 43

4.5 t-SNE visualization of the latent vectors in our 3D-EPN 44

4.6 Example shape completion for real data 47

5.1 ScanComplete overview . 50

5.2 Autoregressive model . 51

5.3 Network architecture . 53

5.4 Train blocks . 55

5.5 Completion results on synthetic SUNCG scenes 60

xii

5.6 Additional completion results . 61

5.7 Completion Results on ScanNet . 62

5.8 Semantic voxel labeling results on SUNCG 63

5.9 Completion and semantic predictions for ScanNet 64

5.10 Results on Google Tango scans . 66

A.1 Convergence analysis of BundleFusion optimization 72

A.2 Comparison to Ceres . 73

A.3 Sparse vs. dense alignment . 75

A.4 Comparison of different voxel resolutions 76

B.1 Example spaces in ScanNet . 78

B.2 ScanNet data capture and annotation overview 79

B.3 Our web-based crowdsourcing interface for scan annotation 84

B.4 3D semantic scene segmentation of 3D scans in ScanNet using our 3D

CNN architecture. Voxel colors indicate predicted or ground truth

category. 88

xiii

Chapter 1

Introduction

Although 2D media abounds in the billions of images and videos we capture and

consume, the reality behind them lives in three-dimensional space. In taking a photo,

we capture a 2D projection of the 3D environment around us. And so in order to

create content – whether it is representative of the real world (e.g., recreating New

York in the Avengers film) or largely fantastical (e.g., the floating landscapes of the

film Avatar) – we must consider this problem of creating and modeling environments

in 3D. A 3D model of an environment enables not only free-form exploration from

arbitrary viewpoints but also paves the way for potential interactions in a game-like

environment.

Thus a large focus in recent computer graphics is on the problem of content

creation. For instance, designing 3D content for movies or games is an incredibly time-

consuming task often involving hundreds or thousands of artists working for several

months on end. Moreover, with recent developments in mixed reality technologies and

platforms comes an increasing need for 3D content, since with augmented and virtual

reality we need to know the scale and location of objects in the scene in order to both

provide realistic visuals as well as enable higher-level reasoning about the scene. For

instance, we must know the scene geometry in order to have virtual pokémon walk

under or over tables or other obstacles rather than pass directly through them, or to

enable a household robot to place a cup on top of a table. One approach towards

mitigating this content creation problem is through capturing high-quality 3D models

1

CHAPTER 1. INTRODUCTION 2

of real-world environments, which could then be directly used for these mixed reality

scenarios or higher-level scene understanding.

In fact, recent advances in commodity range sensors, which provide color and

depth video data at 30Hz, and have shown incredible promise towards potentially

creating such 3D models of real-world environments. However, the quality of such

reconstructed 3D scans has yet to reach that of artist-created 3D models – in partic-

ular, there is markedly noticeable difference in geometry quality. The geometry of 3D

scans is almost always lacking: in addition to potential tracking errors and physical

and resolution limitations from sensors, there are always occlusions in complex scenes.

Such occlusions make it practically impossible to capture fully complete models of

arbitrary real-world scenes. This incompleteness makes the models unsuitable, as it

is both visually lacking, and moreover, provides only a limited basis for higher-level

scene reasoning (e.g., virtual interactions in mixed reality scenarios will not be accu-

rate in unknown or missing regions). Thus we look to create geometrically complete

3D models of real-world environments, i.e. representing the physical reality behind

captured measurements.

Concurrent to advances in 3D scanning and reconstruction is the growth in avail-

ability of 3D CAD models, e.g., millions of 3D models freely available in the Trimble

3D Warehouse1. While these models also remain far from the quality of professional

artist created content – often very simplistic representations – they are nonetheless

geometrically complete. We thus aim to leverage this information about the construc-

tion of complete (albeit unrealistic) models using machine learning techniques to learn

to infer the complete geometry underlying the observations underlying a partial 3D

scan.

Generating these complete models is the first step towards commodity 3D scanning

for content creation and consumer-grade mixed reality. Completing scans nonetheless

already opens up a variety of possibilities for augmented reality, with the potential

for applications such as comprehensive collision detection or inpainting for interior

redesign applications (e.g., completing missing regions when cutting out an object

and moving it around). Towards this goal, this dissertation focuses on leveraging

1 https://3dwarehouse.sketchup.com/

https://3dwarehouse.sketchup.com/

CHAPTER 1. INTRODUCTION 3

generative deep learning techniques to learn to create high-quality, complete models

from 3D scans.

Figure 1.1: While significant progress has been made in 3D scanning and reconstruc-
tion, achieving reconstructed 3D scans with faithful geometric and visual fidelity
to the original physical environments (top), the geometric quality remains notice-
ably behind that of artist-created content (bottom; images by Blender Foundation,
c© copyright Blender Foundation | www.sintel.org). In particular, note the incomplete

geometry, particularly from differing viewpoints (top left vs top right)

1.1 Why 3D Scans?

Acquiring a 3D representation of an environment not only allows us to generate ar-

bitrary image views from any camera position, but also provides precise information

about the scale and location of points in the scene. Such information is requisite

for myriad applications, such as robots or cars which need to navigate through com-

plex 3D environments and thus must be able to construct an accurate spatial map.

Furthermore, in addition to the vast amounts of time and manual effort spent on

CHAPTER 1. INTRODUCTION 4

current content creation pipelines in the entertainment industry, the burgeoning de-

velopment of augmented and virtual reality provides a significant demand for not only

3D content but 3D models of the environments around us. Augmented reality aims

to augment the physical, real world with various types of information, and so must

know exactly where objects are in order to tag them with perceptual information.

With virtual reality, the aim is instead to mask out the real world and provide an

immersive experience of any environment, whether realistic or fantastical. Creating

3D models of our environments not only facilitates creation of shared virtual spaces,

but since the current, real environment nonetheless exists and must be accounted for,

we must also obtain an understanding of the real-world surrounding environment.

Recent advances in 3D scanning and reconstruction have opened an exciting av-

enue to address this problem of creating 3D models of real-world environments. These

approaches take as input a color video stream, and often a depth input stream, of ob-

servations of an environment. They then perform camera tracking to optimize for the

camera poses for each frame in the input video sequence(s) as well as reconstruction

to fuse the observations from these camera locations into a unified 3D model of the

observed surfaces in the scene. In particular, since the introduction of the Microsoft

Kinect, commodity range sensors, providing both color and depth video stream data

at real-time rates, have enabled 3D scanning and reconstruction for the consumer

market. Bringing these 3D scans to high-quality 3D models would enable a new

world of possibilities for applications like mixed reality. In particular, a geometrically

complete 3D model in this context will enable a multitude of applications, including

the basis for realistic physical interactions for virtual agents (e.g., game characters),

autonomous agents (e.g., robots), or physical media (e.g., sound).

1.2 The Challenge of Incompleteness

With the promise of 3D scanning and reconstruction as an avenue for 3D content

creation, we developed a real-time 3D reconstruction approach, BundleFusion [18],

which performs global camera pose optimization in tandem with scene reconstruction,

enabling efficient capture of 3D scans at quality comparable to state-of-the-art offline

CHAPTER 1. INTRODUCTION 5

approaches. Unfortunately, while the resulting 3D scans from state-of-the-art 3D

reconstruction approaches show strong visual and geometric fidelity to the original,

physical environments, scan quality remains far behind that of content created by

professional artists. In Figure 1.1, we see at the top a 3D scan reconstructed by

BundleFusion. From a top-down view of the captured scan, we can see and recognize

all the major objects in the scene; however, with just a change in camera view we can

see that the scanned model is in fact quite incomplete in various regions. In particular,

the chair legs are missing as they are thin and metallic (as chair legs often are), and

highly reflective (or refractive) surfaces register little-to-no depth information with

depth sensors, which are light-based. Under the table is difficult to scan (although not

impossible) due to very dark lighting (lack of visual features), but moreover adds a

significant cost in user time and maneuvering – even then, regions behind the desktop

computer would remain occluded. Additionally, the seat of the chair on the right and

the walls behind the monitors are missing geometry due to occlusions from the table

and monitors, respectively. In contrast, the 3D model created by a professional artist

(Figure 1.1, bottom) contains clean, sharp geometry for the entirety of the scene.

Furthermore, in an effort to collect a large-scale dataset of 3D scans – for the

purpose of powering 3D semantic inference with deep learning techniques (see Ap-

pendix B for more detail) – myself and several other students captured over 1, 500

scans, reconstructed with a state-of-the-art reconstruction algorithm. While about a

third of us were “experts” in reconstruction in that we knew how to capture data well-

suited to state-of-the-art tracking algorithms, the resulting set of 3D scans nonetheless

contained significant missing regions, as seen in Figure 1.2.

This incompleteness of 3D scanned models is a significant barrier for use in content

creation scenarios or for reasoning about environments. Exploration of an environ-

ment would fail to be immersive with the occasional missing geometry; virtual inter-

actions would also be unreliable in such regions (e.g., a virtual pet walking through

missing chair legs); various physical simulations like re-lighting or producing sound

effects would not be accurate without the full scene geometry; and reasoning about

scanned environments (e.g, inferring semantics or detecting object instances) is sub-

stantially more challenging when data is missing. Thus we address this challenge

CHAPTER 1. INTRODUCTION 6

of incompleteness in this dissertation, with the aim of inferring the physical reality

underlying the measurements captured by a 3D scan.

Figure 1.2: The incompleteness of 3D scans is exemplified in the data acquisition
for our ScanNet [16] dataset, where scans even from expert users contain significant
missing regions.

1.3 Learning to Complete 3D Scans

In this dissertation, we formulate the problem of scan completion as a generative task

conditioned on an input partial scan. We leverage generative deep learning techniques

to learn models which exploit part-wise similarity within and between scans of scenes

to infer missing geometry. While individual scenes are typically distinct from each

other as a whole, they are typically composed of similar components, e.g., furniture

such as chairs, tables, cabinets, beds, etc, as well as similar structure, e.g., chairs

often near tables.

We approach this problem as a conditional generative task, where we condition on

an input partial scan and aim to learn ‘part’-wise similarity between scans to infer the

complete model. While scenes are typically quite distinct from each other as a whole,

CHAPTER 1. INTRODUCTION 7

they are typically composed of similar components, e.g., furniture such as chairs,

tables, cabinets, beds, etc, as well as similar structure, e.g., chairs often near tables.

In this dissertation, we develop several approaches to learn models designed to from

such similarities, additionally exploiting the significant quantities complete synthetic

models available. We first focus on the simpler problem of scans of isolated shapes,

and then tackle the problem of large-scale scenes. Generating large scale output is

a significant challenge, particularly for deep learning in 3D, due to cubic growth in

resolution – previous such approaches have thus limited their scope to single objects

or single image frames rather than full scenes.

In particular, this dissertation makes the following contributions:

• An end-to-end approach for generating a complete 3D model from an input

RGB-D video sequence. From an input RGB-D video sequence, it provides a

real-time 3D reconstruction algorithm for efficiently capturing globally consis-

tent 3D scans. It then shows how to learn a generative model conditioned on

these scans to create high-quality output meshes.

• Generative model for completing scans of shapes. It shows how to formulate the

problem of completing scans of isolated objects as a generative task, conditioned

on an input partial scan. The method is built to operate on a 3D scan based

on common 3D reconstruction representations, and maps partial scans into an

embedding space where correlation with complete models are learned, producing

complete 3D meshes as output.

• Generative model for completing scans of scenes. It provides a new algorithm

for completing large-scale (e.g., room- to building-floor-scale) scans of scenes,

in particular addressing the challenge of varying scene sizes in 3D. Leveraging

a combination of fully-convolutional networks and a coarse-to-fine hierarchy,

this approach is the first to demonstrate scan completion at scale on arbitrary

scenes.

• Domain transfer from synthetic to real data. It shows that the approaches

proposed are capable of domain adaptation from synthetic scans to real-world

CHAPTER 1. INTRODUCTION 8

scans, achieving convincing scan completion for real-world scans where there is

no available ground truth.

1.4 Dissertation Structure

This dissertation is organized following the pipeline from input RGB-D sequence to

complete mesh generation.

Chapter 2 provides an overview of current real-time 3D scanning and reconstruction

methods as well as various approaches to scan completion. It further discusses the

common data representations for 3D scans as well as several synthetic CAD model

datasets which provide complete albeit simplistic geometry.

Chapter 3 describes how to efficiently acquire globally consistent 3D scans of environ-

ments using BundleFusion for camera pose optimization and surface reconstruction.

Chapter 4 focuses on completing scans of shapes. It provides a formulation of

shape completion as a generative task, leveraging a database of CAD model priors to

produce high-quality complete meshes of shapes.

Chapter 5 focuses on completing scans of scenes. It addresses the challenge of

varying-sized, large-scale scenes, which we see in practice with real scans.

Chapter 6 discusses the resulting pipeline from scan acquisition to complete mesh

generation, and suggests several avenues for future work towards the aim of commod-

ity 3D scanning for content creation.

Chapter 2

Background

Creating 3D models of the real world has seen an extensive amount of research over

the last couple of decades through the field of 3D reconstruction. The introduction

of commodity depth sensors in recent years has spurred momentum in real-time re-

construction, as these sensors are capable of providing live streams of both depth and

color data. Since commodity sensors are most suited towards potential end applica-

tions like consumer-grade mixed reality devices, we focus on this scenario.

However, the incompleteness of raw 3D reconstruction results is ill-suited towards

immediate use in practical applications such as content creation or mixed reality. Var-

ious approaches towards inferring such missing geometry have been developed, from

more traditional optimization based hole-filling approaches to methods leveraging

recent advances in machine learning – particularly generative deep learning.

This chapter provides an overview following the pipeline of scan acquisition to

complete mesh generation. In particular, it first discusses approaches towards real-

time 3D reconstruction for scan acquisition as well as the data representations used

to represent 3D scans. It then gives a brief overview of the synthetic counterparts

of these 3D scans, i.e., synthetic CAD models, for which there is complete geometric

information and an opportunity to learn how to generate complete structures from

partial observations. Finally, it provides a discussion of various methods for complet-

ing 3D scans.

9

CHAPTER 2. BACKGROUND 10

2.1 Real-Time 3D Reconstruction

Here, we focus on the scenario of real-time reconstruction with commodity handheld

RGB-D sensors – well-suited both for portable, efficient scan capture as well as ap-

plications such as augmented or virtual reality. Such reconstruction approaches take

as input a RGB-D video sequence and produce as output a 3D representation of the

scanned environment. Note that for our aim of scan completion we do not strictly

require a reconstruction approach that runs in real time; however, in practice the

reconstruction results can reach that of offline methods, and the efficiency of capture

is a significant gain in a tractable pipeline from reconstruction to completion. There

are two major challenges in the 3D reconstruction process: scene reconstruction and

camera tracking. With scene reconstruction, we refer specifically to the creation of

a 3D model from a sequence of color and depth images along with the camera poses

they were taken from, i.e., fusing these observations into a unified 3D model. Camera

tracking involves solving for these camera poses associated with the input depth and

color images.

The process of scene reconstruction typically falls into two main types of ap-

proaches: point-based methods and implicit volumetric methods. Point-based meth-

ods [88, 116, 38, 47, 120] use an unstructured set of points to represent the surface

geometry of the scene, and an new input depth map is fused into the global represen-

tation by point merging (and instantiation where there are no corresponding points

found). This creates a memory-efficient, explicit representation of the scene; however,

spatial structure is lost, i.e. we do not obtain a continuous surface.

Implicit volumetric methods represent the surface geometry with an implicit func-

tion defined on a volumetric grid. Most common is the volumetric fusion approach by

Curless and Levoy [15], which represents the scene with an implicit truncated signed

distance field (TSDF), where each voxel in a volumetric grid stores the distance to

the nearest surface, the sign indicates visibility from the camera, and the surface can

be extracted as the isosurface at 0 (e.g., by Marching Cubes [61]). Incoming depth

maps are fused into the model through a weighted averaging scheme, which effectively

regularizes noise and provides efficient updates. This volumetric fusion approach is

CHAPTER 2. BACKGROUND 11

used by the prominent KinectFusion [72, 40], which showed real-time 3D reconstruc-

tion of small scenes with a commodity handheld sensor, along with its successors

[87, 118, 127, 9, 74, 18].

The original volumetric fusion approach of Curless and Levoy [15] as well as

KinectFusion [72, 40] were limited in scalability due to their representation of the

3D scene as uniform volumetric grid, whose cubic growth makes large-scale scanning

quickly intractable. Thus a variety of efficient data structures for real-time volumet-

ric fusion have been proposed, exploiting the sparsity of the TSDF representation

to create more efficient spatial subdivision strategies. Moving-volume approaches

[87, 118] maintain a limited active volume size but stream data out-of-core as the

sensor moves. Hierarchical data structures [127, 9] trade off more efficient spatial

subdivision with more computationally complex updates. A spatial-hashing-based

data structure for real-time 3D reconstruction [74] has also been proposed to provide

both memory efficiency as well as O(1) updates to the data structure. Such sparse

scene representations (coupled with efficient data management of the active volume)

can effectively eliminate scale restrictions to commodity sensor scanning (e.g., 4mm-

level voxel resolution).

While these approaches enable volumetric fusion at scale, camera pose estimates

were largely computed through a frame-to-model iterative closest point (ICP) algo-

rithm [5, 10, 89]. Frame-to-frame or frame-to-model ICP can be very efficient, for

each new frame only aligning it to the previous frame or current fused model, respec-

tively. Thus it has been commonly used for real-time reconstruction, providing very

efficient camera tracking. However, this local alignment strategy suffers from drift,

as each new frame introduces small relative errors which easily accumulate over a

long sequence of frames, causing distortions in the 3D model. Even small pose errors,

seemingly negligible on a small local scale, can accumulate to dramatic error in the

final 3D model [74]. For instance, the common problem of loop closure, where we

need to localize a frame to a previously visited location (e.g., scanning around a room

and coming back to the starting position), typically cannot be handled with such

local tracking approaches, as there is no global registration to recognize previously

visited locations and enough error has accumulated over time to produce inconsistent

CHAPTER 2. BACKGROUND 12

tracking; an example is shown later in the top right of Figure 3.7. Global pose op-

timization can mitigate these tracking issues with local, frame-to-model registration,

often employing bundle adjustment [110] or pose graph optimization [54] to solve for

all camera poses. Pose graph optimization solves for a camera trajectory from a set

of relative pose measurements, distributing the error across the graph. With bundle

adjustment, camera poses are solved for by minimizing reprojection error of corre-

spondences found between multiple image observations. Such correspondences are

often found through sparse keypoint detection and matching; dense correspondences

can also be employed but often come at a higher computation cost and small basin

of convergence for the pose optimization.

Most research on achieving globally consistent 3D models at scale from RGB-D

input requires offline processing and access to all input frames. [57, 129, 131, 130, 12]

provide for globally consistent models by optimizing across the entire pose trajectory,

but require minutes or even hours of processing time, meaning real-time revisiting

or refinement of reconstructed areas is infeasible, and large-scale scan collection in-

tractable. Real-time, drift-free pose estimation is a key focus in the simultaneous

localization and mapping (SLAM) literature. Many real-time monocular RGB meth-

ods have been proposed, including sparse methods [51], semi-dense [26, 31] or direct

methods [66, 25]. While impressive tracking results have been shown using only

monocular RGB sensors, these approaches do not generate detailed dense 3D models,

which is our aim.

As pose estimation from range data based on variants of the ICP algorithm is rel-

atively brittle, improvements have also been developed in the form of incorporation of

color data [117] or global pose correction such as pose graph optimization [103], loop

closure detection [119], incremental bundle adjustement [121, 29], or recovery from

tracking failures by image or keypoint-based relocalization [33, 111]. Such online

correction typically runs at the cost of time (seconds to minutes to perform a global

optimization step [119, 29]), rely on computing optimized camera poses prior to fusion

limiting the ability to refine the model afterwards [103], or use point-based represen-

tations that limit quality and lack general applicability where continuous surfaces are

CHAPTER 2. BACKGROUND 13

needed [121]. The recent BundleFusion [18] approach introduces a parallelizable opti-

mization framework supporting globally-consistent model creation at real-time rates.

Such real-time 3D reconstruction enables efficient creation of 3D models representa-

tive of real-world scenes, from which we can then infer the complete mesh geometry

underlying the 3D scan.

2.2 Synthetic 3D Model Datasets

Our aim is to create high-quality, geometrically complete 3D models representing the

physical world underlying a partial scan observation. While real-world scans remain

incomplete, synthetic 3D models created by humans with 3D modeling software (e.g.,

SketchUp, Autodesk Maya, etc.) are complete, and offer and opportunity to learn

the construction of a complete model. Ideally we would like to learn from a large

collection of professional artist created models which closely mimic real-world scenes;

unfortunately, such models are costly and not readily available.

Recently there have been efforts to collect open libraries and datasets of publicly

available 3D models created by more novice users. Early efforts to build collections of

3D shapes offered relatively limited sets of models, with approximately 1, 800 shapes

in the well-known Princeton Shape Benchmark [95]. Inspired by the large-scale data

collection efforts for 2D images such as ImageNet [20], the ShapeNet [8] dataset was

developed, comprising several million models of which a core set of approximately

51, 300 are cleaned and annotated with category labels and alignments. These models

are largely simpler than real-world objects; despite this, they are clean, sharp, and

complete – qualities lacking in 3d scans.

Similar efforts have been made towards collecting datasets of 3D models of scenes.

SceneNet [36] provides a collection of 57 synthetic scenes. In the following SceneNet

RGB-D [65], it further provides a scene generation pipeline which randomly samples

scene layouts and 3D objects to augment to arbitrary new scenes. This enables gener-

ation of numerous different scenes, although since they are not manually designed but

CHAPTER 2. BACKGROUND 14

random, they appear more unnatural and chaotic. The SUNCG dataset [100] con-

tains approximately 45, 000 from the Planner5D website1 in which users create scenes

by constructing scene layouts and adding furniture from an object library. Note that

the number of unique objects remains rather limited (approximately 2, 600) as the

users aim to model room layouts and furniture arrangements rather than individual

3D shapes.

Using these synthetic models, which have complete geometry, we can simulate

through a virtual scanning process synthetic 3D scans which then have corresponding

complete ground truth models, which we can leverage to help learn a generative model

for scan completion.

2.3 3D Shape and Scene Completion

Completing 3D shapes has a long history in geometry processing and is often applied

as a post-process to raw, captured 3D data. Traditional methods typically focus on

filling small holes by fitting local surface primitives such planes or quadrics, or by

using a continuous energy minimization [101, 71, 128]. Many surface reconstruction

methods that take point cloud inputs can be seen as such an approach, as they aim to

fit a surface and treat the observations as data points in the optimization process; e.g.,

Poisson Surface Reconstruction [45, 46]. Such methods perform well for filling small,

local holes, but struggle with missing global structures (e.g., a missing chair leg). To

address larger holes, other shape completion methods have been developed, including

approaches that leverage symmetries in meshes or point clouds [109, 67, 77, 97, 102] or

part-based structural priors derived from a database [106]. Although these methods

show impressive results, using pre-defined regularities fundamentally limits the shape

space to that of hand-crafted design.

One can also approach scan completion by way of replacing scanned geometry

with aligned synthetic models retrieved from a database [69, 93, 49, 58, 94], as the

synthetic models are known to be complete. Such approaches assume identical or

near-identical database matches for objects in the 3D scans, which is very difficult

1 https://planner5d.com/

https://planner5d.com/

CHAPTER 2. BACKGROUND 15

to achieve in practice. This assumption can be relaxed by allowing modification of

the retrieved models, e.g., by non-rigid registration such that they better fit the scan

[76, 85]. While this non-rigid deformation of models from a database improves shape

coverage, it is still difficult to generalize to large changes in global structure.

To improve generalization to new scans, data-driven structured prediction meth-

ods show promising results. One of the first such methods is Voxlets [30], which uses

a random decision forest to predict unknown voxel neighborhoods, producing a final

model through a weighted average of the predicted results.

Recently, we have seen inspiration from the success of deep learning coupled with

very large collections of image datasets in the image domain. Here, rather than strictly

defining the features we wish to analyze, deep learning enables powerful feature learn-

ing and abstraction – demonstrating impressive success in image classification tasks.

For image generation, a substantially more difficult task, significant improvements

have also been demonstrated through deep learning based models. With these ad-

vances in machine learning and a growing availability of 3D model databases, 3D

generative tasks have begun to be studied as well. In particular for scan comple-

tion, 3D ShapeNets [8] learns a 3D convolutional deep belief network from a shape

database. While this network was developed for object recognition, in order to im-

prove object classification performance, it also completes 3D objects. Their approach

operates on a ternary volumetric grid representing occupancy and unknown space,

and predicts the occupancy of the complete 3D shape. Since large resolutions are

difficult to handle with convolutional neural networks, with even more dramatic in-

crease in computational cost and memory for larger filter banks in 3D than in 2D,

the model operates on a 303 grid.

Several other works have followed, using 3D convolutional neural networks (CNNs)

for object completion. The 3D-EPN approach [19] learns to complete shapes by pre-

dicting a completed model with a generative 3D CNN conditioned on a partial scan

input. The resulting coarse completion is then refined using a shape synthesis step

leveraging a database of CAD model priors, generating high-quality shapes at much

higher resolution (1283) than the ∼ 303 resolution commonly used for 3D deep learn-

ing. This approach is shown to generalize to real-world scans of objects. However,

CHAPTER 2. BACKGROUND 16

the global completion and local synthesis in this approach are not end-to-end train-

able, so potential global errors in the coarse prediction or limitations from the coarse

resolution are difficult to fix in the later synthesis. Han et. al. [35] presents a shape

completion approach which learns both global prediction and local refinement in an

end-to-end fashion for synthetic shapes. To more efficiently represent and process 3D

volumes, hierarchical 3D CNNs have been proposed [84, 115]. The same hierarchical

strategy can be also used for generative approaches which output higher-resolution

3D models [83, 107, 37, 35]. One can also increase the spatial extent of a 3D CNN

with dilated convolutions [126]. This approach has recently been used for predicting

missing voxels and semantic inference for a single depth frame [100]. However, these

methods operate on a fixed-sized volume whose extent is determined at training time.

Hence, they focus on processing either a single object or a single depth frame, rather

than a full scene, which can vary in size from a few meters to tens of meters in length.

Chapter 3

Acquiring 3D Scans

In order to acquire 3D models of real-world environments, we aim to reconstruct them

from RGB-D video sequences of the environment. We can then track the frames

and fuse together these observations in order to construct a 3D model of a scene.

In particular, for our aim of constructing complete 3D models, we must perform

this reconstruction in real time – real-time performance enables live feedback of the

current reconstruction state, thus allowing users to react to and focus on scanning

missing regions. With commodity RGB-D sensors such as the Microsoft Kinect, we

are able to capture RGB-D data at 30Hz with a consumer device, and so we aim

to perform real-time reconstruction using such RGB-D sensors in order to capture

geometrically complete 3D scans of real-world scenes.

In this chapter, we describe BundleFusion, our approach for capturing real-world

3D scans in real time. BundleFusion enables efficient capture of large-scale envi-

ronments, constructing globally-consistent reconstructions from which a 3D mesh

model of a scene can be extracted as output. As we will see in this chapter, while

BundleFusion enables capture of high-quality surface reconstructions, with real-time

performance aiding more complete scanning, but it does not solve the problem of

capturing complete 3D models of a scene. Thus it provides the first step in our scan

completion pipeline; from the scan acquired using BundleFusion, we will generate

complete 3D models in Chapters 4 and 5.

17

CHAPTER 3. ACQUIRING 3D SCANS 18

Figure 3.1: BundleFusion’s global pose optimization takes as input the RGB-D stream
of a commodity sensor, detects pairwise correspondences between the input frames,
and performs a combination of local and global alignment steps using sparse and
dense correspondences to compute per-frame pose estimates.

Here, we discuss the core components of BundleFusion for real-time 3D scan acqui-

sition: large-scale scanning and globally-consistent camera tracking. In order to scale

to capture of large scenes in real time, BundleFusion builds upon the spatial voxel

hashing data structure proposed by VoxelHashing [74]. To provide robust camera

tracking, we develop a fully parallelizable sparse-to-dense global pose optimization

framework, maintaining global structure with implicit loop closures while achieving

high local reconstruction accuracy. In addition, the scene reconstruction is dynami-

cally updated in correspondence with these global pose updates, in order to provide

a consistent scene model for interactive reconstruction. As proof of concept, we then

captured and reconstructed 1513 3D scans using BundleFusion, which became the

core of the ScanNet dataset [16] (see Appendix B for more detail).

3.1 Large-Scale 3D Scanning

In order to scale to large scenes in real time, we obtain a dense scene reconstruction

using a sparse volumetric representation and fusion [74]. Scene geometry is recon-

structed by incrementally fusing all input RGB-D data into an implicit truncated

signed distance (TSDF) representation, following Curless and Levoy [15]. The TSDF

is defined over a volumetric grid of voxels; to store and process this data, we employ

the state-of-the-art sparse volumetric voxel hashing approach proposed by Nießner et

CHAPTER 3. ACQUIRING 3D SCANS 19

al. [74]. This approach scales well to the scenario of large-scale surface reconstruc-

tion, since empty space neither needs to be represented nor addressed; the TSDF is

stored in a sparse volumetric grid based on spatial hashing. Following the original

approach, we also use voxel blocks of 8 × 8 × 8 voxels. In contrast to the work of

Nießner et al. [74], we allow for RGB-D frames to both be integrated into the TSDF

as well as de-integrated (i.e., adding and removing frames from the reconstruction).

We ensure that these two operations are symmetric, i.e., one inverts the other, thus

enabling dynamic updates to the scene according to the global pose optimization; see

Section 3.3 for more detail.

3.2 Globally-Consistent Tracking

The core of BundleFusion is an efficient global pose optimization algorithm which

operates in unison with a large-scale, real-time 3D reconstruction framework; see

Figure 3.1. At every frame, we continuously run pose optimization and update the

reconstruction according to the newly-computed pose estimates. We do not strictly

rely on temporal coherence, allowing for free-form camera paths, instantaneous relo-

calization, and frequent revisiting of the same scene region. This makes our approach

robust towards sensor occlusion, fast frame-to-frame motions and featureless regions.

We take as input the RGB-D stream captured by a commodity depth sensor. To

obtain global alignment, we perform a sparse-then-dense global pose optimization:

we use a set of sparse feature correspondences to obtain a coarse global alignment,

as sparse features inherently provide for loop closure detection and relocalization.

This alignment is then refined by optimizing for dense photometric and geometric

consistency. Sparse correspondences are established through pairwise Scale-Invariant

Feature Transform (SIFT) [62] feature correspondences between all input frames (see

Section 3.2.1). That is, detected SIFT keypoints are matched against all previous

frames, and carefully filtered to remove mismatches, thus avoiding false loop closures.

To make real-time global pose alignment tractable, we perform a hierarchical

local-to-global pose optimization (see Section 3.2.2) using the filtered frame corre-

spondences. On the first hierarchy level, every consecutive n frames compose a chunk,

CHAPTER 3. ACQUIRING 3D SCANS 20

which is locally pose optimized under the consideration of its contained frames. On

the second hierarchy level, all chunks are correlated with respect to each other and

globally optimized. This is akin to hierarchical submapping [63]; however, instead

of analyzing global connectivity once all frames are available, our new method forms

chunks based on the current temporal window. Note that this is our only temporal

assumption; between chunks there is no temporal reliance.

This hierarchical two-stage optimization strategy reduces the number of unknowns

per optimization step and ensures our method scales to large scenes. Pose alignment

on both levels is formulated as energy minimization problem in which both the filtered

sparse correspondences, as well as dense photometric and geometric constraints are

considered (see Section 3.2.3).

3.2.1 Global Pose Alignment

We first describe the details of our real-time global pose optimization strategy, which

is the foundation for online, globally-consistent 3D reconstruction. Input to our

approach is the live RGB-D stream S = {fi = (Ci,Di)}i captured by a commodity

sensor. We assume spatially and temporally aligned color Ci and depth data Di at

each frame, captured at 30Hz and 640 × 480 pixel resolution. The goal is to find a

set of 3D correspondences between the frames in the input sequence, and then find

an optimal set of rigid camera transforms {Ti} such that all frames align as best as

possible. The transformation Ti(p) = Rip + ti (rotation Ri, translation ti) maps

from the local camera coordinates of the i-th frame to the world space coordinate

system; we assume the first frame defines the world coordinate system.

Feature Correspondence Search

In our framework, we first search for sparse correspondences between frames using ef-

ficient feature detection, feature matching, and correspondence filtering steps. These

sparse correspondences are later used in tandem with dense photometric correspon-

dences, but since accurate sparse correspondences are crucial to attaining the basin

of convergence of the dense optimization, we elaborate on their search and filtering

CHAPTER 3. ACQUIRING 3D SCANS 21

below. For each new frame, SIFT features are detected and matched to the features

of all previously seen frames. We use SIFT as it accounts for the major variation

encountered during hand-held RGB-D scanning, namely: image translation, scaling,

and rotation. Potential matches between each pair of frames are then filtered to

remove false positives and produce a list of valid pairwise correspondences as input

to global pose optimization. Our correspondence search is performed entirely on

the GPU, avoiding the overhead of copying data (e.g., feature locations, descriptors,

matches) to the host. We compute SIFT keypoints and descriptors at 4 − 5 ms per

frame, and match a pair of frames in ≈ 0.05ms (in parallel). We can thus find full

correspondences in real-time against up to over 20K frames, matched in a hierarchical

fashion, for every new input RGB-D image.

3.2.2 Hierarchical Optimization

In order to run at real-time rates on up to tens of thousands of RGB-D input frames,

we apply a hierarchical optimization strategy. The input sequence is split into short

chunks of consecutive frames. On the lowest hierarchy level, we optimize for local

alignments within a chunk. On the second hierarchy level, chunks are globally aligned

against each other, using representative keyframes with associated features per chunk.

Local Intra-Chunk Pose Optimization Intra-chunk alignment is based on chunks

of Nchunk = 11 consecutive frames in the input RGB-D stream; adjacent chunks

overlap by 1 frame. The goal of local pose optimization is to compute the best intra-

chunk alignments {Ti}, relative to the first frame of the chunk, which locally defines

the reference frame. To this end, valid feature correspondences are searched between

all pairs of frames of the chunk, and then the energy minimization approach described

in Section 3.2.3 is applied, jointly considering both these feature correspondences and

dense photometric and geometric matching. Since each chunk only contains a small

number of consecutive frames, the pose variation within the chunk is small, and

we can initialize each of the Ti to the identity matrix. To ensure that the local

pose optimization result after convergence is sufficiently accurate, we compute the

re-projection error between each pair of images within the chunk using the optimized

CHAPTER 3. ACQUIRING 3D SCANS 22

local trajectory. If the re-projection error is too large for any pair of images, the

chunk is discarded and not used in the global optimization.

Per-Chunk Keyframes Once a chunk has been completely processed, we define

the RGB-D data from the first frame in the chunk to be the chunk’s keyframe. We also

compute a representative aggregate keyframe feature set. Based on the optimized pose

trajectory of the chunk, we compute a coherent set of 3D positions of the intra-chunk

feature points in world space. These 3D positions may contain multiple instances

of the same real-world point, found in separate pairwise frame matches. Thus, to

obtain the keyframe feature set, we aggregate the feature point instances that have

previously found (intra-chunk) matches. Those that coincide in 3D world space are

merged to one best 3D representative in the least squares sense. This keyframe feature

set is projected into the space of the keyframe using the transformations from the

frames of origin, resulting in a consistent set of feature locations and depths. Note

that once this global keyframe and keyframe feature set is created, the chunk data

(i.e., intra-chunk features, descriptors, correspondences) can be discarded as it is not

needed in the second layer pose alignment.

Global Inter-Chunk Pose Optimization Sparse correspondence search and fil-

tering between global keyframes is analogous to that within a chunk, but on the

level of all keyframes and their feature sets. If a global keyframe does not find any

matches to previously seen keyframes, it is marked as invalid but kept as a candi-

date, allowing for re-validation when it finds a match to a keyframe observed in the

future. The global pose optimization computes the best global alignments {Ti} for

the set of all global keyframes, thus aligning all chunks globally. Again, the same

energy minimization approach from Section 3.2.3 is applied using both sparse and

dense constraints. Intra-chunk alignment runs after each new global keyframe has

found correspondences. The pose for a global keyframe is initialized with the delta

transform computed by the corresponding intra-chunk optimization, composed with

the previous global keyframe pose.

CHAPTER 3. ACQUIRING 3D SCANS 23

3.2.3 Pose Alignment as Energy Optimization

Given a set of 3D correspondences between a set of frames S (frames in a chunk or

keyframes, depending on hierarchy level), the goal of pose alignment is to find an

optimal set of rigid camera transforms {Ti} per frame i (for simpler notation, we

henceforth write i for fi) such that all frames align as best as possible. We parame-

terize the 4×4 rigid transform Ti using matrix exponentials based on skew-symmetric

matrix generators [68], which yields fast convergence. This leaves 3 unknown param-

eters for rotation, and 3 for translation. For ease of notation, we stack the degrees of

freedom for all |S| frames in a parameter vector X . We phrase the alignment problem

as a variational non-linear least squares minimization problem in the unknown pa-

rameters X , defining an alignment objective based on both sparse features and dense

photometric and geometric constraints:

Ealign(X) = wsparseEsparse(X) + wdenseEdense(X).

Here, wsparse and wdense are weights for the sparse and dense matching terms, respec-

tively. wdense is linearly increased; this allows the sparse term to first find a good

global structure, which is then refined with the dense term (as the poses fall into

the basin of convergence of the dense term, it becomes more reliable), thus achieving

coarse-to-fine alignment. Note that depending on the optimization hierarchy level,

the reference frame is the first frame in the chunk (for intra-chunk alignment), or the

first frame in the entire input sequence (for global inter-chunk alignment). Hence,

the reference transform T0 is not a free variable and left out from the optimization.

Sparse Matching In the sparse matching term, we minimize the sum of distances

between the world space positions over all feature correspondences between all pairs

of frames in S:

Esparse(X) =

|S|∑
i=1

|S|∑
j=1

∑
(k,l)∈C(i,j)

∥∥Tipi,k − Tjpj,l

∥∥2
2
.

Here, pi,k is the k-th detected feature point in the i-th frame. Ci,j is the set of

CHAPTER 3. ACQUIRING 3D SCANS 24

all pairwise correspondences between the i-th and the j-th frame. Geometrically

speaking, we seek the best rigid transformations Ti such that the Euclidean distance

over all the detected feature matches is minimized.

Dense Matching We additionally use dense photometric and geometric constraints

for fine-scale alignment. To this end, we exploit the dense pixel information of each

input frame’s color Ci and depth Di. Evaluating the dense alignment is computa-

tionally more expensive than the previous sparse term. We therefore evaluate it on

a restricted set E of frame pairs, E contains a frame pair (i, j) if their camera angles

are similar (within 60◦, to avoid glancing angles of the same view) and they have non-

zero overlap with each other; this can be thought of as encoding the edges (i, j) of a

sparse matching graph. The optimization for both dense photometric and geometric

alignment is based on the following energy:

Edense(T) = wphotoEphoto(T) + wgeoEgeo(T).

Here, wphoto is the weight of the photometric term and wgeo of the geometric term,

respectively. For the dense photo-consistency term, we evaluate the error on the

gradient Ii of the luminance of Ci to gain robustness against lighting changes:

Ephoto(X) =
∑

(i,j)∈E

|Ii|∑
k=0

∥∥∥Ii(π(di,k))− Ij(π(T −1j Tidi,k))
∥∥∥2
2
.

Here, π denotes the perspective projection, and di,k is the 3D position associated

with the k-th pixel of the i-th depth frame. Our geometric alignment term evaluates

a point-to-plane metric to allow for fine-scale alignment in the tangent plane of the

captured geometry:

Egeo(X) =
∑

(i,j)∈E

|Di|∑
k=0

[
nT
i,k(di,k − T −1i Tjπ−1

(
Dj

(
π(T −1j Tidi,k)

))
)
]2
.

Here, ni,k is the normal of the k-th pixel in the i-th input frame. Correspondences

that project outside of the input frame are ignored, and we apply ICP-like pruning

CHAPTER 3. ACQUIRING 3D SCANS 25

Figure 3.2: Global pose optimization robustly detects and resolves loop closure. Note,
while data is first integrated at slightly wrong locations, the volumetric representation
improves over time as soon as better pose estimates are available.

based on distance and normal constraints after each optimization step. For the dense

photometric and geometric constraints, we downsample Ii and Di, to 80× 60 pixels.

Note that for the global pose optimization, the result of optimizing densely at every

keyframe is effectively reset by the sparse correspondence optimization, since the 3D

positions of the correspondences are fixed. Thus we only perform the dense global

keyframe optimization after the user has indicated the end of scanning.

3.3 Interactive Reconstruction

Key to live, globally consistent reconstruction is updating the 3D model based on

newly-optimized camera poses. We thus monitor the continuous change in the poses

of each frame to update the volumetric scene representation through integration and

de-integration of frames. That is, in order to update the pose of a frame with an

improved estimate, we remove the RGB-D image at the old pose with a new real-

time de-integration step, and re-integrate it at the new pose. Based on this strategy,

errors in the volumetric representation due to accumulated drift or dead reckoning in

feature-less regions can be fixed as soon as better pose estimates are available. Thus,

the volumetric model continuously improves as more RGB-D frames and refined pose

estimates become available; e.g., if a loop is closed (cf. Figure 3.2).

CHAPTER 3. ACQUIRING 3D SCANS 26

3.3.1 Integration and De-integration

Integration of a depth frame Di occurs as follows. For each voxel, D(v) denotes the

signed distance of the voxel, W(v) the voxel weight, di(v) the projective distance

(along the z axis) between a voxel and Di, and wi(v) the integration weight for a

sample of Di. For data integration, each voxel is then updated by

D′(v) = D(v)W(v)+wi(v)di(v)
W(v)+wi(v)

, W′(v) = W(v) + wi(v).

We can reverse this operation to de-integrate a frame, updating each voxel by

D′(v) = D(v)W(v)−wi(v)di(v)
W(v)−wi(v)

, W′(v) = W(v)− wi(v).

We can thus update a frame in the reconstruction by de-integrating it from its orig-

inal pose and integrating it with a new pose. This is crucial for obtaining high-quality

reconstructions in the presence of loop closures and revisiting, since the already inte-

grated surface measurements must be adapted to the continuously changing stream

of pose estimates.

3.4 Reconstruction Results

For live scanning, we use a Structure Sensor 1 mounted to an iPad Air. RGB-D data

is streamed at 30Hz with 640 × 480 color and depth. Note that we are agnostic to

the type of used depth sensor. We stream the captured RGB-D data via a wireless

network connection to a desktop machine that runs our global pose optimization

and reconstructs a 3D model in real time. Visual feedback of the reconstruction

is streamed live to the iPad to aid in the scanning process and help capture more

complete 3D scans. Reconstruction results of scenes captured using our live system are

shown in Figure 3.3. Our real-time, global tracking enables capture of quite complete

3D models with high local quality of geometry and texture of various large-scale indoor

scenes. While real-time feedback enables better coverage of a scene during scanning,

1 http://structure.io/

http://structure.io/

CHAPTER 3. ACQUIRING 3D SCANS 27

Figure 3.3: Large-scale reconstruction results: BundleFusion’s real-time global pose
optimization outperforms current state-of-the-art online reconstruction systems. The
globally aligned 3D reconstructions are at a quality that was previously only attain-
able offline. Our real-time performance also enables capture of more complete scans;
however, there still remain holes, largely due to occlusions.

helping achieve relatively complete 3D reconstructions, these reconstructed models

do remain geometrically incomplete, largely in occluded regions that are difficult to

impossible to scan.

Qualitative Comparison First, we compare to the real-time 3D reconstruction

approach of Nießner et al. [74], see Figure 3.7. In contrast to their work, which builds

on frame-to-model tracking and suffers from the accumulation of camera drift, we

are able to produce drift-free reconstructions at high fidelity. Our novel global pose

optimization framework implicitly handles loop closure, recovers from tracking fail-

ures, and reduces geometric drift. Note that most real-time fusion methods (e.g.,

[40, 72, 9, 74]) share the same frame-to-model ICP tracking algorithm, and therefore

suffer from notable drift. Figure 3.4 shows a comparison of our approach with the

CHAPTER 3. ACQUIRING 3D SCANS 28

Figure 3.4: BundleFusion’s real-time global pose optimization (top) delivers a re-
construction quality on par or even better than the off-line Redwood [12] (middle)
and the ElasticFusion [121] (bottom) system. Note that Redwood does not use color
information, and was not able to resolve all loop closures in this challenging scan.

online ElasticFusion approach of Whelan et al. [121] and the offline Redwood ap-

proach [12], using their rigid variant. ElasticFusion captures surfel maps using dense

frame-to-model tracking and explicitly handles loop closures using non-rigid warping.

In contrast, our dynamic de-integration and integration of frames mitigates issues

with warping artifacts in rigid structures, and moreover produces a high quality con-

tinuous surface. Since our approach does not rely on explict loop closure detection,

it scales better to scenarios with many loop closures. While the Redwood approach

takes several hours (2.3h - 13.2h for each of our sequences), we achieve comparable

quality and better reconstruction of small-scale detail at real-time rates. Note that

Redwood does not take color information into account, thus struggling with sequences

that contain fewer geometric features.

Performance We measure the performance of our pipeline on an Intel Core i7

3.4GHz CPU (32GB RAM). For compute, we use a combination of a NVIDIA GeForce

GTX Titan X and a GTX Titan Black. The Titan X is used for volumetric reconstruc-

tion, and the Titan Black for correspondence search and global pose optimization.

BundleFusion runs with a framerate well beyond 30Hz (see Figure 3.5) for all shown

CHAPTER 3. ACQUIRING 3D SCANS 29

Figure 3.5: Performance Evaluation: BundleFusion runs beyond 30Hz for all used
test sequences. Computation is split up over two GPUs (left bar and right bars).

test sequences. Note that the global dense optimization runs in < 500ms at the end

of the sequences.

Figure 3.6: Recovery from tracking failure: BundleFusion is able to detect (gray
overlay) and recover from tracking failure; i.e., if the sensor is occluded or observes a
featureless region.

Recovery from Tracking Failure If a new keyframe cannot be aligned success-

fully, we assume tracking is lost and do not integrate surface measurements. An

example scanning sequence is shown in Figure 3.6. To indicate tracking failure, the

reconstruction is shown with a gray overlay. Based on this cue, the user is able to

CHAPTER 3. ACQUIRING 3D SCANS 30

recover the method by moving back to a previously scanned area. Note that there

is no temporal nor spatial coherence required, as our method globally matches new

frames against all existing data. Thus, scanning may be interrupted, and continued

at a completely different location.

Figure 3.7: Comparison to the VoxelHashing approach of Nießner et al. [74]: in
contrast to the frame-to-model tracking of VoxelHashing, our novel global pose op-
timization implicitly handles loop closure (top), robustly detects and recovers from
tracking failures (middle), and greatly reduces local geometric drift (bottom).

Loop Closure Detection and Handling Our global pose optimization approach

detects and handles loop closures transparently (see Figure 3.2), since the volumet-

ric scene representation is continuously updated to match the stream of computed

pose estimates. This allows incrementally fixing loop closures over time by means of

CHAPTER 3. ACQUIRING 3D SCANS 31

integration and de-integration of surface measurements.

3.4.1 Reconstructing a Large-Scale Dataset of 3D scans

In addition to the scenes reconstructed for the quantitative and qualitative evaluation,

we further demonstrate the value of the BundleFusion approach on a large scale. Using

BundleFusion, we were able to construct the ScanNet dataset [16]. All 1513 scans

of ScanNet were reconstructed using BundleFusion, providing solid proof of concept

of its robustness and efficiency. Additionally, approximately half of these scans were

reconstructed by users who had previously had no experience in 3D scanning. We can

thus pave the way for large-scale data collection of 3D scans – ScanNet provided an

order of magnitude more densely reconstructed real-world scans than previous RGB-

D datasets. This opens up many new avenues for powering higher-level inference

in 3D using data-hungry modern machine learning methods like deep learning; see

Appendix B for more detail.

3.5 Discussion

This chapter presented an approach for real-time reconstruction, whose efficient pro-

cessing and live feedback enables users to scan and reconstruct 3D models of real-

world scenes at high quality and completeness. The online global pose optimization

enables capture of globally-consistent scans visually and geometrically representative

of the original physical environments, and the ability to operate on commodity sensor

data is well-suited towards augmented and virtual reality scenarios. The live feed-

back is crucial for achieving completeness in reconstructed models. In Figure 3.8,

we see a comparison of scan quality and completeness between novice user scanning

for the first time and an expert user well-versed in 3D scanning and reconstruction

algorithms. While both achieve good scan quality, the expert user is able to fully

leverage the real-time feedback to achieve a more complete scan. However, there do

still remain holes and missing regions in the reconstructed 3D scans; such holes make

CHAPTER 3. ACQUIRING 3D SCANS 32

Figure 3.8: Comparison of scan quality and completeness from our approach between
a novice user scanning for the first time and an expert user well-versed in 3D scanning
and reconstruction algorithms. Note that both achieve good surface quality in scanned
regions, and the expert user can fully leverage the real-time feedback to achieve a
relatively complete scan, although there still remain holes from occlusions and a few
missed regions.

the resulting 3D models ill-suited for content creation or mixed reality scenarios. Ad-

ditionally, many of these are regions which are difficult to impossible to scan, e.g.,

geometry behind monitors is occluded and the sensor does not fit behind them.

Thus our aim in the following chapters is to infer the scene geometry in these

missing, unseen regions. We acquire (partial) 3D scans using BundleFusion, and

from these scans, we develop a learned approach towards generating 3D models of

the complete scene underlying these 3D scan observations. To produce geometrically

complete 3D models of real-world scenes, which can then be consumed by various

applications (e.g., enabling accurate exploration and interactions in mixed reality),

we present a generative deep learning approach conditional on these partial scans in

Chapters 4 and 5.

Chapter 4

Formulating Scan Completion as a

Generative Task for 3D Shapes

From the scans acquired as described by Chapter 3, we aim to produce complete 3D

models. In particular, inspired by successes of generative deep learning approaches for

images [34, 24, 21, 80, 56, 55, 125, 75, 81], we aim to formulate scan completion as 3D

generative task. However, since real-world scans are of arbitrary size (e.g., ranging

from several meters in length for a typical room to tens of meters for a building

floor), and generating high resolution output remains challenging, we first focus on

scan completion for 3D shapes. With isolated objects, we can temporarily bypass the

challenge of generating large-scale output by scaling all objects into the same fixed

volume size (impractical for 3D scenes, due to the high variance in sizes). We leave

the problem of scan completion for scenes to be addressed in Chapter 5.

To complete scans of 3D shapes, we design a generative model which, conditioned

on a partial scan, learns the complete 3D model underlying the partial scan observa-

tion. In this chapter, we propose a 3D-Encoder-Predictor Network (3D-EPN) based

on volumetric convolutional neural networks to learn the scan completion process for

shapes. By leveraging deep neural networks, we can not only learn to fill small holes

but also learn global structures, and generalize global geometric structure to learn

a mapping from partial scans to complete shapes, thus completing large holes with

missing structural information (e.g., largely missing chair legs).

33

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 34

To fully exploit 3D convolutional neural networks, we represent both the partial

scan and complete model with volumetric grids. In particular, we employ implicit

distance fields, using a truncated signed distance field to encode the partial scan, as is

used in our scan acquisition, and a truncated distance field to represent the complete

shape. Here, we leverage the sign of the implicit distance field to encode known

and unknown information, so we create unsigned distance fields as output. This

representation not only enables encoding more resolution than a binary occupancy

grid, but also allows us to extract mesh output as the isosurface of the predicted

distance field, producing complete 3D meshes.

4.1 A Generative Model for Predicting Coarse Com-

pleted Global Structure

The goal of our 3D-EPN is to take a partial 3D scan of an object as input, and

predict a completed 3D shape as output, i.e., learn a generative model for complete

3D models conditioned on a partial scan. We represent each model in a 3D voxel

grid encoding a truncated signed distance field for the partial scan, and truncated

distance field for the completed shape.

Our 3D-EPN design loosely follows the idea of autoencoders, similar to Doso-

vitskiy [24]. Unlike traditional autoencoder networks that reconstruct the original

input and learn an efficient encoding, we aim to fill in missing data from partial input

scans. In our case, the network learns a correlation of partial and complete models at

training time, which at test time regresses a completed model with constraints given

by known surfaces or free space information. At a high level, the goal is to map all

partial scans into a shared, embedded space which we correlate with the complete

models. We design the training process such that we learn this mapping, as well as the

reconstruction from it, even under largely missing data. The main challenge of this

process is generating new information – i.e., filling in the missing data from unseen

views – by generalizing geometric structures. The network needs to encode general

rules of 3D model design, and generalize across different shape instances. Here, the

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 35

main objective is the ability to reconstruct a complete mesh from the latent space

while respecting the constraints of known data points.

4.1.1 Network Architecture

Figure 4.1: Network architecture of our 3D Encoder-Predictor Network.

We propose a 3D deep network that consumes a partial scan obtained from volu-

metric fusion [15], and predicts the distance field values for the missing voxels. Both

our input and output are represented as volumetric grids with two channels repre-

senting the input TSDF; the first channel encodes the distance field and the second

known/unknown space; see Section 4.1.2. Note that the binary known/unknown

channel encodes a significant amount of knowledge as well, it will let the network

know what missing areas it should focus on.

Our network is composed of two parts and is visualized in Figure 4.1. The first

part is a 3D encoder, which compresses the input partial scan. The compressed

stream is then concatenated with the semantic class predictions of a 3D-CNN shape

classifier into a hidden space volume, in order to specifically encourage the network

to leverage semantic information. The joined semantic features and input partial

scan features are compressed by two fully-connected layers which embed the scan

and its semantic information into the latent space. This encoder helps the network

summarize global context from the input scan – both the observed distance values,

known empty space, and class prediction. The second part is a predictor network

that uses 3D up-convolutions to grow the hidden volume into a 323 full size output

of estimated distance field values. Based on the global context summarized by the

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 36

encoder network, the predictor net is able to infer missing values. In addition, we add

skip connections – similar to a U-net architecture [86] – between the corresponding

encoder and predictor layers, visualized at the bottom of Figure 4.1. These skip

connections help guide the output according to the input, since we want the output

to look similar to the input in known regions already seen by the camera. The data

from these connections is then concatenated with the intermediary output of the

upconvolutions, thus doubling the feature map size. This way, we ensure propagation

of local structure of the input data and make sure it is preserved in the generated

output predictions.

We use ReLU and batch normalization for all the layers (except the last one)

in the network. We use a masked L1 loss that computes the difference of ground

truth distance field and predicted ones. Only the error in the unknown regions is

counted; the known occupied and known empty voxels are masked out and enforced

to match up the input. We use the ADAM optimizer [50] with 0.001 learning rate and

momentum 0.9. The learning rate is decayed by half every 20 epochs. For 153, 540

training samples, it takes ≈ 3 days to train the model to convergence (about half as

long without the skip connections).

4.1.2 Generating Supervised Training Data

In order to provide supervised training data, we aim to generate realistic ground

truth scanning patterns to virtually scan 3D CAD models. We use models from

the ShapeNet model database [8], which provide ground truth complete models, and

virtually scan these models to create partial input scans. We simultaneously train

on a subset of 8 categories of ShapeNetCore (see Section 4.2), comprising a total of

25590 object instances (the test set is composed of 5384 models).

For training, we generate complete distance fields using a 3D digital differential

analyzer [2]. To generate partial reconstructions, we virtual scan the complete 3D

model, roughly mimicking real-world scanning. We generate depth maps from a

random trajectory around a given model with our custom virtual DirectX renderer.

The obtained depth maps store range values in normalized device coordinates. We

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 37

backproject these to metric space (in m) by using Kinect intrinsics. The extrinsic

camera parameters define the rigid transformation matrices which provide alignment

for all generated views. All views are integrated into a shared volumetric grid using

the volumetric fusion approach by Curless and Levoy [15], where the voxel grid’s

extent is defined by the model bounding box. Note that the ground truth poses are

given by the virtual camera parameters used for rendering and the models are aligned

with respect to the voxel grid. As a result, we obtain a truncated signed distance field

(TSDF) for a given (virtual) scanning trajectory. This representation also encodes

known free space; i.e., all voxels in front of an observed surface point are known to

be empty. The sign of the distance field encodes this: a positive sign is known-empty

space, zero is on the surface, and a negative sign indicates unknown values. This

additional information is crucial for very partial views; see Figure 4.2. For training

the 3D-EPN, we separate our the sign value from the absolute distance values, and

feed them into the network in separate channels; see Section 4.1.1.

For each model, we generate a set of trajectories with different levels of partial-

ness/completeness in order to reflect real-world scanning with a hand-held commodity

RGB-D sensor. These partial scans form the training input. The ground truth coun-

terpart is generated using a distance field transform based on a 3D scanline method

[2]; here, we obtain a perfect (unsigned) distance field (DF). We choose to represent

the ground truth as an unsigned distance field because it is non-trivial to robustly

retrieve the sign bit from arbitrary 3D CAD models (some are closed, some not, etc.).

In our training tasks, we use six different partial trajectories per model. This serves

as data augmentation strategy, and results in a total of 153, 540 training samples of

our 3D-EPN.

In order to train our 3D-EPN, we generate training pairs of TSDF and DF at

resolutions of 323.

4.2 Evaluation

In this section we evaluate our generative shape completion approach on both syn-

thetic shapes from the ShapeNet dataset [8] as well as real-world range scans from

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 38

Figure 4.2: Examples of shape completion with our method (note that our approaches
operates on all shape types using the same trained models).

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 39

the dataset proposed by Qi et. al. [79]. Across all experiments, we train the 3D-CNN

classifier network, the 3D-EPN, and the 3D retrieval network on the same train/test

split for ShapeNet [8], with the 3D-EPN trained on a subset of eight classes: namely,

airplanes, tables, cars, chairs, sofas, dressers, lamps, and boats. Quantitative evalua-

tions are obtained for a test set of 1200 models. When a distance field representation

is available, we extract the isosurface using Matlab’s isosurface function. However,

some baselines directly predict meshes; in these cases, we use those for rendering and

evaluation. Our main results on synthetic data and real data are visualized in Figures

4.2 and 4.6, respectively.

4.2.1 Evaluation Metrics

To quantitatively evaluate the quality of our completions, we compute the `1 error

of the unknown regions against the ground truth distance field (in voxel space, up to

truncation distance of 2.5 voxels).

4.2.2 Comparison to Previous Work

Method `1-Err (323)

Poisson [45, 46] 1.90

ShapeRecon [85] 0.97

3D ShapeNets [123] 0.91

Ours (3D-EPN) 0.51

Ours (3D-EPN-class) 0.48

Ours (3D-EPN-unet) 0.38

Ours (final) (3D-EPN-unet-class) 0.37

Table 4.1: Quantitative shape completion results on synthetic ground truth data,
using single depth map scans as input. We measure the `1 error of the unknown
regions against the ground truth distance field (in voxel space, up to truncation
distance of 2.5 voxels).

In Figure 4.3, we compare against state-of-the-art shape completion methods.

Since some methods are designed to complete shapes from single depth images, we

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 40

Figure 4.3: Qualitative evaluation on ShapeNet [8]. We show results on a variety
of different scenes and compare against [45, 85, 123]. Note that ShapeRecon is only
trained on a subset of categories (left). Our 3D-EPN successfully captures missing
global structures even in relatively large unknown regions.

use only single image scans for input. Poisson surface reconstruction [45, 46] is mostly

used to obtain complete surfaces on dense point clouds, but it cannot infer missing

structures. ShapeRecon [85] performs slightly better, but overall, it is heavily depen-

dent on finding good nearest neighbors; the available implementation was also trained

only on a subset of classes. 3D ShapeNets [123] is most similar to our method, but

it is a fully generative model, which in practice hurts performance since it addresses

a more general task. A quantitative evaluation on the same dataset is shown in Ta-

ble 4.1. Overall, our 3D-EPN performs best, and it efficiently leverages the 3D-CNN

class vector input.

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 41

4.2.3 Benefit of Completion for Classification

In Table 4.2, we address the question of whether it is possible to use the 3D-EPN

to improve accuracy on classification and retrieval tasks. For a given partial scan,

there are two options for performing classification. In the first variant, we train the

3D-CNN of Qi et al. [79] on partial input to reflect the occlusion patterns of the test

data. In the second variant, we first run our 3D-EPN and obtain a completed 323

output; we use this result as input to the 3D-CNN which is now trained on complete

shapes. In both cases, the exact same partial test inputs are used; however, with the

intermediate completion step, performance for both classification and shape retrieval

increases significantly.

3D-CNN 3D-EPN + 3D-CNN
/w Partial Train /w Complete Train

Classification 90.9% 92.6%

Shape Retrieval 90.3% 95.4%

Table 4.2: Effect of 3D-EPN predictions on classification and shape retrieval tasks.
We train a 3D-CNN classification network [79] on partial (left) and complete (right)
ShapeNet models. The retrieval accuracy is computed from the classes of the top
3 retrieved neighbors. Performance improves significantly when we use the 3D-EPN
predictions as an intermediary result. Note that the test task is the same for both
cases since they use the same test input.

4.2.4 Ablation Study

We study various design choices for our shape completion pipeline. We evaluate sev-

eral variants of the 3D-EPN network architecture, and analyze the benefits of using

skip connections (strong performance gain) as well as explicitly using learned semantic

class information (lesser performance gain). We further show that our model gener-

alizes well enough to leverage multi-class training to outperform individual models

trained specifically for each class. In addition, we show that our 3D-EPN maintains

low completion error over varying degrees of partialness in input scans.

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 42

Network Variants

Table 4.3 shows a quantitative evaluation of our network on a test set of input partial

scans with varying trajectory sizes (≥ 1 camera views). Note this is in contrast to

Table 4.1, where we test completion from single depth frames only; since real-world

scans can contain a varying number of views, we evaluate our approach on scans from

a variety of trajectory sizes. Our 3D-EPN with skip connections and class vector

performs best, informing the best shape synthesis results.

Method `1-Err (323)

Ours (3D-EPN) 0.382
Ours (3D-EPN-class) 0.376
Ours (3D-EPN-unet) 0.310

Ours (final) (3D-EPN-unet-class) 0.309

Table 4.3: Quantitative shape completion results on synthetic ground truth data
for input partial scans with varying trajectory sizes. We measure the `1 error of
the unknown regions against the ground truth distance field (in voxel space, up to
truncation distance of 2.5 voxels).

Single Class vs. Multi-Class Training

Table 4.4 evaluates different training options for performance over multiple object

categories. We aim to answer the question whether we benefit from training a separate

network for each class separately (first column). Table 4.4 compares the results of

training separate networks for each class with a single network trained over all classes

(with and without class information). Our networks trained over all classes combined

performs better than training over each individual class, as there is significantly more

training data, and the network leveraging class predictions performs the best.

Varying Degrees of Completeness

Figure 4.4 shows an evaluation and comparisons against 3D ShapeNets [8] on different

test datasets with varying degrees of partialness. Even for highly partial input, our

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 43

Separate EPN-unet EPN-unet
EPN-unets w/o Class /w Class

Category (known class) Ours Final
(# train models) `1-Error `1-Error `1-Error

Chairs (5K) 0.477 0.409 0.418

Tables (5K) 0.423 0.368 0.377

Sofas (2.6K) 0.478 0.421 0.392

Lamps (1.8K) 0.450 0.398 0.388

Planes (3.3K) 0.440 0.418 0.421

Cars (5K) 0.271 0.266 0.259

Dressers (1.3K) 0.453 0.387 0.381

Boats (1.6K) 0.380 0.364 0.356

Total (25.7K) 0.422 0.379 0.374

Table 4.4: Quantitative evaluations of 323 3D-EPNs; from left to right: separate
networks have been trained for each class independently (at test time, the ground
truth class is used to select the class network); a single network is used for all classes,
but no class vector is used; our final result uses a single network trained across all
classes and we input a probability class vector into the latent space of the 3D-EPN.

method achieves relatively low completion errors. Compared to previous work, the

error rate of our method is relatively stable with respect to the degree of missing

data.

Figure 4.4: Quantitative evaluation of shape completion using our 3D-EPN and 3D
ShapeNets [123] on different degrees of partial input. For this task, we generate
several test sets with partial observed surfaces ranging from 20% to 70%. Even
for very partial input, we obtain relatively low reconstruction errors, whereas 3D
ShapeNets becomes more unstable.

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 44

Figure 4.5: t-SNE visualization of the latent vectors in our 3D-EPN trained for shape
completion without class information (3D-EPN-unet). The rendered images show
input partial scans. Four zoom-ins are shown for regions of cars (top left), lamps (top
right), airplanes (bottom left) and sofas (bottom right).

Shape Embeddings

Fig. 4.5 shows a t-SNE visualization of the latent vectors in our 3D-EPN trained

for shape completion without using class information (3D-EPN-unet). For a set of

test input partial scans, we extract their latent vectors (the 512-dimensional vector

after the first fully-connected layer and before up-convolution) and then use t-SNE

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 45

to reduce their dimension to 2 as (x, y) coordinates. Images of the partial scans are

displayed according to these coordinates. It is interesting to note that the input partial

scans are naturally clustered according to their semantic categories, over varying

degrees of occlusion, even without explicitly introducing a classification network into

the completion pipeline Shapes with similar geometry tend to lie near each other,

although they have varying degrees of occlusion. The visualization indicates that our

3D-EPN is truly learning the semantics of the partial scans, even with a supervision

task that is only for shape completion.

4.2.5 Effect of Data Representation

An important question for generative learning in 3D is the data representation that

is used. We focus on volumetric representations, and evaluate the effect of different

volumetric surface representations for shape completion in Table 4.5. The simplest

representation is a binary grid with 1 indicating occupied surface and 0 indicating

empty or unknown regions. We can additionally add camera visibility information

to create a ternary grid, indicating known occupied, known empty, and unknown

space – this additional information gives improved completion; intuitively, it gives

the 3D-EPN explicit information as to where the unknown regions are that might

need to be completed. Furthermore, we can encode the surface as a distance field

rather than a binary grid, where each voxel stores the distance to the nearest surface.

This not only conforms with common 3D scanning representations, but also encodes

more information in voxels representing empty space, and is capable of encoding

some super-resolution. Using a distance field we again see improved performance,

and adding the camera visibility information in as a signed distance field provides the

best performance.

That is, there are two major characteristics of the representation which affect the

3D-EPN performance. First, a smooth function, as realized by signed and unsigned

distance fields, provides better performance (and super-resolution encoding) than

a discrete representation. Second, explicitly storing known-free vs unknown space

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 46

Surface Rep. `1-Error (323) `2-Error (323)

Binary Grid 0.653 1.160

Ternary Grid 0.567 0.871

Distance Field 0.417 0.483

Signed Distance Field 0.379 0.380

Table 4.5: Quantitative evaluation of the surface representation used by our 3D-EPN.
In our final results, we use a signed distance field input; it encodes the ternary state
of known-free space, surface voxels, and unknown space, and is a smooth function. It
provides the lowest error compared to alternative volumetric representations.

encodes information in addition to the voxels on the surface, improving output com-

pletion quality. The signed distance field representation combines both advantages.

4.2.6 Results on Real Shapes

In Figure 4.6, we show examples of shape completion on real-world range scans. The

test scans are part of the RGB-D test set of the work of Qi et al. [79], and have

been captured with a PrimeSense sensor. The dataset includes reconstructions and

frame alignment obtained through VoxelHashing [74] as well as mesh objects which

have been manually segmented from the surrounding environment. For the purpose

of testing our mesh completion method, we only use the first depth frame as input

(left column of Figure 4.6). We use our 3D-EPN trained as described on purely

synthetic data from ShapeNet [8]. As we can see, our method is able to produce

faithful completion results even for highly partial input data. Although the results

are compelling for both the intermediate 3D-EPN predictions, as well our final output,

the completion quality looks visually slightly worse than the test results on synthetic

data. We attribute this to the fact that the real-world sensor characteristics of the

PrimeSense are different from the synthetically-generated training data used to train

our model. We believe a better noise model, reflecting the PrimeSense range data,

could alleviate this problem (at the moment we don’t simulate sensor noise). Another

option would be to generate training data from real-world input, captured with careful

scanning and complete scanning patterns; e.g., using the dataset captured by Choi et

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 47

Figure 4.6: Shape completion from our method on real-world range scans from com-
modity sensors (here, a PrimeSense is used). We visualize partial input, 3D-EPN
predictions, and our final results. In addition, we show the retrieved shapes as in-
termediate results on the right. Note that although the retrieved models look clean,
they are inherently different from the input with respect to global structure.

CHAPTER 4. 3D SHAPE COMPLETION AS A GENERATIVE TASK 48

al. [14]. However, we did not further explore this direction in the context of the paper,

as our goal was to learn the completions from actual ground truth input. In addition

to 3D-EPN predictions and our final results, we show the intermediate shape retrieval

results. These models are similar; however, they differ significantly from the partial

input with respect to global geometric structure. Our final results thus combine the

advantages of both the global structure inferred by our 3D-EPN, as well as the local

detail obtained through the shape synthesis optimization process.

4.3 Discussion

This chapter presented a generative model for 3D shape completion, producing high-

quality complete shapes by leveraging generative deep learning. We additionally show

the effectiveness of the signed distance field representation for 3D scans over other

volumetric representations. For a task such as shape completion, the use of skip con-

nections is very effective, as there is significant information in the input that is useful

to transfer around a bottleneck layer. While using semantic class information from an

explicit classification network provides improvement in completion quality, the gain

is somewhat marginal. Additionally, using our model trained only on synthetic data,

we are still able to show faithful completion results on real-world scans, indicating

that our virtual scanning effectively mimics real-world data characteristics, and that

synthetic and real shapes can still look similar enough at a part level to exploit for

machine learning.

The most fundamental limitation here is the fixed, limited resolution at which

the completion model operates. In practice, we do not have scans of only isolated

objects. It is also not practical to take the approach of resizing all scans to fit into the

same volumetric grid for general scans of arbitrary scenes, as we would not only lose

the inherent scale information, but moreover larger scans would lose a considerable

amount of information if resized to fit into typical tractable output resolutions for

volumetric 3D CNNs (323, 643). Thus in Chapter 5, we will adapt our conditional

generative scan completion model to operate on general indoor scans of room-scale

scenes.

Chapter 5

A Generative Model for Scan

Completion for Large-Scale Scenes

Now that we have constructed a generative model for completion 3D scans of shapes

in Chapter 4, the largest challenge in generalizing this model to complete scans of

arbitrary scenes is handling large and varying sizes. Here we are also faced with

the curse of dimensionality for volumetric 3D data. In this chapter, we describe

ScanComplete, which extends our generative model for scan completion to operate

on large 3D environments without restrictions on spatial extent. As with our shape

completion formulation, we represent partial scans and complete models with implicit

(signed) distance fields, designing our model to predict the complete distance field

representing the physical environment, conditioned on a partial scan of the scene.

In order to process scans at scale, we leverage fully-convolutional neural networks

that can be trained on smaller subvolumes but applied to arbitrarily-sized scene en-

vironments at test time. This enables efficient processing of 3D scans of very large

indoor scenes: we show examples with bounds of up to 1480 × 1230 × 64 voxels

(≈ 70 × 60 × 3m). In addition, to obtain high-quality completed output, the model

must use a sufficiently high resolution to predict fine-scale detail. However, it must

also consider a sufficiently large context to recognize large structures and maintain

global consistency. To reconcile these competing concerns, we propose a coarse-to-

fine strategy in which the model predicts a multi-resolution hierarchy of outputs. The

49

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 50

Figure 5.1: Overview of our method: we propose a hierarchical coarse-to-fine ap-
proach, where each level takes a partial 3D scan as input, and predicts a completed
scan at the respective level’s voxel resolution using our autoregressive 3D CNN ar-
chitecture (see Figure 5.3). The next hierarchy level takes as input the output of the
previous level, and is then able to refine the results. This process allows leveraging
a large spatial context while operating on a high local voxel resolution. In the final
result, we see both global completion as well as local surface detail.

first hierarchy level predicts scene geometry at low resolution but large spatial con-

text. Following levels use a smaller spatial context but higher resolution, and take

the output of the previous hierarchy level as input in order to leverage global context.

Using ScanComplete, we show scene completion at unprecedented spatial extents.

In addition, we show that our architecture design is flexible towards other tasks aside

from scene completion – we can also outperform state of the art in the task of 3D

semantic segmentation. Furthermore, we demonstrate that it is possible to train our

model on synthetic data and transfer it to completion of real RGB-D scans taken

from commodity scanning devices.

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 51

5.1 Network Design

The ScanComplete method takes as input a partial 3D scan, represented by a trun-

cated signed distance field (TSDF) stored in a volumetric grid. The TSDF is gen-

erated from depth frames following the volumetric fusion approach of Curless and

Levoy [15], which has been widely adopted by modern RGB-D scanning methods

[72, 40, 74, 42, 18]. We feed this partial TSDF into our new volumetric neural net-

work, which outputs a truncated, unsigned distance field (TDF). At train time, we

provide the network with a target TDF, which is generated from a complete ground-

truth mesh. The network is trained to output a TDF which is as similar as possible

to this target complete TDF.

Our network uses a fully-convolutional architecture with three-dimensional filter

banks. Its key property is its invariance to input spatial extent, which is particularly

critical for completing large 3D scenes whose sizes can vary significantly. That is, we

can train the network using random spatial crops sampled from training scenes, and

then test on different spatial extents at test time.

Figure 5.2: Our model divides volumetric space into eight interleaved voxel groups,
such that voxels from the same group do not neighbor each other. It then predicts the
contents of these voxel groups autoregressively, predicting voxel group i conditioned
on the predictions for groups 1 . . . i − 1. This approach is based on prior work in
autoregressive image modeling [82].

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 52

The memory requirements of a volumetric grid grow cubically with spatial extent,

which limits manageable resolutions. Small voxel sizes capture local detail but lack

spatial context; large voxel sizes provide large spatial context but lack local detail.

To get the best of both worlds while maintaining high resolution, we use a coarse-to-

fine hierarchical strategy. Our network first predicts the output at a low resolution

in order to leverage more global information from the input. Subsequent hierarchy

levels operate at a higher resolution and smaller context size. They condition on

the previous level’s output in addition to the current-level incomplete TSDF. We use

three hierarchy levels, with a large context of several meters (∼ 6m3) at the coarsest

level, up to a fine-scale voxel resolution of ∼ 5cm3; see Figure 5.1.

Our network uses an autoregressive architecture based on that of Reed et al. [82].

We divide the volumetric space of a given hierarchy level into a set of eight voxel

groups, such that voxels from the same group do not neighbor each other; see Fig-

ure 5.2. The network predicts all voxels in group one, followed by all voxels in group

two, and so on. The prediction for each group is conditioned on the predictions for

the groups that precede it. Thus, we use eight separate networks, one for each voxel

group; see Figure 5.2.

We also explore multiple options for the training loss function which penalizes

differences between the network output and the ground truth target TDF. As one

option, we use a deterministic `1-distance, which forces the network to focus on a single

mode. This setup is ideal when partial scans contain enough context to allow for a

single explanation of the missing geometry. As another option, we use a probabilistic

model formulated as a classification problem, i.e., TDF values are discretized into

bins and their probabilities are weighted based on the magnitude of the TDF value.

This setup may be better suited for very sparse inputs, as the predictions can be

multi-modal.

Our ScanComplete network architecture for a single hierarchy level is shown in

Figure 5.3. It is a fully-convolutional architecture operating directly in 3D, which

makes it invariant to different training and testing input data sizes.

At each hierarchy level, the network takes the input partial scan as input (encoded

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 53

Figure 5.3: Our ScanComplete network architecture for a single hierarchy level. We
take as input a TSDF partial scan, and autoregressively predict both the completed
geometry and semantic segmentation. Our network trains for all eight voxel groups in
parallel, as we use ground truth for previous voxel groups at train time. In addition
to input from the current hierarchy level, the network takes the predictions from the
previous level (i.e., next coarser resolution as input), if available; cf. Figure 5.1.

as an TSDF in a volumetric grid) as well as the previous low-resolution TDF predic-

tion (if not the base level) and any previous voxel group TDF predictions. Each of the

input volumes is processed with a series of 3D convolutions with 1×1×1 convolution

shortcuts. They are then all concatenated feature-wise and further processed with 3D

convolutions with shortcuts. At the end, the network splits into two paths, one out-

putting the geometric completion, and the other outputting semantic segmentation,

which are measured with an `1 loss and voxel-wise softmax cross entropy, respectively.

An overview of the architectures between hierarchy levels is shown in Figure 5.1.

5.1.1 Increasing the Receptive Field

The coarse-to-fine hierarchy is designed to increase the effective receptive field of the

network without incurring the cubic cost of increasing the size of the filter kernels. The

coarsest resolution of the hierarchy is capable of capturing a large amount of global

information from the input. This is then input into the next level of the hierarchy

in an autoregressive fashion, thus also transferring some of this global information.

Our hierarchy of 18.8cm3 → 9.4cm3 → 4.7cm3 enables use to complete large global

structures as well as finer level detail.

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 54

To train the hierarchy, we feed ground truth volumes as the previous voxel group

inputs to the network at train time. For the previous hierarchy level input, however,

we feed in volumes predicted by the previous hierarchy level network. Initially, we

trained on ground-truth volumes here, but found that this tended to produce highly

over-smoothed final output volumes. We hypothesize that the network learned to rely

heavily on sharp details in the ground truth volumes that are sometimes not present in

the predicted volumes, as the network predictions cannot perfectly recover such details

and tend to introduce some smoothing. By using previous hierarchy level predicted

volumes as input instead, the network must learn to use the current-level partial

input scan to resolve details, relying on the previous level input only for more global,

lower-frequency information (such as how to fill in large holes in walls and floors).

The one downside to this approach is that the networks for each hierarchy level can

no longer be trained in parallel. They must be trained sequentially, as the networks

for each hierarchy level depend on output predictions from the trained networks at

the previous level. Ideally, we would train all hierarchy levels in a single, end-to-end

procedure. However, current GPU memory limitations make this intractable.

5.2 Decoupling Train and Test Sizes

The fully-convolutional network design of ScanComplete enables decoupling of train

and test sizes. We can thus train on cropped subvolumes of a full scene, while testing

on the entire scene in O(1) forward passes. In Figure 5.4, we visualize the subvolumes

used for training our fully-convolutional network on the three hierarchy levels of our

network. By randomly selecting a large variety of these subvolumes as ground truth

pairs for training, we are able train our network such that it generalizes to varying

spatial extents at test time.

5.3 Generating Supervised Training Data

To train our ScanComplete CNN architecture, we prepare training pairs of partial

TSDF scans and their complete TDF counterparts. We generate training examples

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 55

Figure 5.4: Subvolume train-test pairs of our three hierarchy levels.

from SUNCG [100], using 5359 train scenes and 155 test scenes from the train-test

split from prior work [100]. As our network requires only depth input, we virtually

scan depth data by generating scanning trajectories mimicking real-world scanning

paths. To do this, we extract trajectory statistics from the ScanNet dataset [16] and

compute the mean and variance of camera heights above the ground as well as the

camera angle between the look and world-up vectors. For each room in a SUNCG

scene, we then sample from this distribution to select a camera height and angle.

Within each 1.5m3 region in a room, we select one camera to add to the training

scanning trajectory. We choose the camera c whose resulting depth image D(c) is

most similar to depth images from ScanNet. To quantify this similarity, we first com-

pute the histogram of depth of values H(D(c)) for all cameras in ScanNet, and then

compute the average histogram, H̄. We then compute the Earth Mover’s Distance

between histograms for all cameras in ScanNet and H̄, i.e., EMD(H(D(c)), H̄) for

all cameras c in ScanNet. We take the mean µEMD and variance σ2
EMD of these

distance values. This gives us a Gaussian distribution over distances to the av-

erage depth histogram that we expect to see in real scanning trajectories. For

each candidate camera c, we compute its probability under this distribution, i.e.,

N (EMD(H(D(c)), H̄), µEMD, σEMD). We take a linear combination of this term with

the percentage of pixels in D(c) which cover scene objects (i.e., not floor, ceiling, or

wall), reflecting the assumption that people tend to focus scans on interesting objects

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 56

rather than pointing a depth sensor directly at the ground or a wall. The highest-

scoring camera c∗ under this combined objective is added to the training scanning

trajectory. This way, we encourage a realistic scanning trajectory, which we use for

rendering virtual views from the SUNCG scenes.

For rendered views, we store per-pixel depth in meters. We then volumetrically

fuse [15] the data into a dense regular grid, where each voxel stores a truncated signed

distance value. We set the truncation to 3× the voxel size, and we store TSDF values

in voxel-distance metrics. We repeat this process independently for three hierarchy

levels, with voxel sizes of 4.7cm3, 9.4cm3, and 18.8cm3.

We generate target TDFs for training using complete meshes from SUNCG. To

do this, we employ the level set generation toolkit by Batty [4]. For each voxel, we

store a truncated distance value (no sign; truncation of 3× voxel size), as well as a

semantic label of the closest object to the voxel center. As with TSDFs, TDF values

are stored in voxel-distance metrics, and we repeat this ground truth data generation

for each of the three hierarchy levels.

For training, we uniformly sample subvolumes at 3m intervals out of each of the

train scenes. We keep all subvolumes containing any non-structural object voxels

(e.g., tables, chairs), and randomly discard subvolumes that contain only structural

voxels (i.e., wall/ceiling/floor) with 90% probability. This results in a total of 225, 414

training subvolumes. We use voxel grid resolutions of [32× 16× 32], [32× 32× 32],

and [32×64×32] for each level, resulting in spatial extents of [6m×3m×6m], [3m3],

[1.5m×3m×1.5m], respectively. A sample test volume is visualized in Figure 5.4. For

testing, we test on entire scenes. Both the input partial TSDF and complete target

TDF are stored as uniform grids spanning the full extent of the scene, which varies

across the test set. Our fully-convolutional architecture allows training and testing

on different sizes and supports varying training spatial extents.

Note that the sign of the input TSDF encodes known and unknown space ac-

cording to camera visibility, i.e., voxels with a negative value lie behind an observed

surface and are thus unknown. In contrast, we use an unsigned distance field (TDF)

for the ground truth target volume, since all voxels are known in the ground truth.

One could argue that the target distance field should use a sign to represent space

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 57

inside objects. However, this is infeasible in practice, since the synthetic 3D models

from which the ground truth distance fields are generated are rarely watertight. The

use of implicit functions (TSDF and TDF) rather than a discrete occupancy grid

allows for better gradients in the training process; this is demonstrated by a variety

of experiments on different types of grid representations in prior work [19].

5.4 Evaluation

We evaluate our ScanComplete approach on both scans of synthetic scenes from the

SUNCG dataset [100] as well as real-world scans from the ScanNet dataset [16].

Across all experiments, we train our model on the same train/test scenes for SUNCG

as defined by SSCNet. [100] (5359 train scenes, 115 test scenes). Note that we do

not use the exact same frames from these scenes, since SSCNet and thus their data

generation as well was designed for single frames, and we instead simulate scanning

trajectories. Our main results on synthetic data and real data are visualized in Figures

5.5 and 5.7, respectively. In addition, we show that our ScanComplete architecture

can be applied to other tasks in addition to completion: we can also predict per-

voxel semantic class labels as well as jointly prediction completion and semantics, see

Section 5.5.

5.4.1 Evaluation Metric

To quantitatively evaluate our completion quality, we evaluate using `1 distances with

respect to the entire target scene volume (entire), predicted surface (pred. surf.),

target surface (target surf.), and unknown space (unk. space). The `1 distances are

measured in voxel units, using a truncation of 3 voxels. Note that these metrics

shouls be evaluated as a whole, as they can all be biased in certain directions, e.g.,

the entire scene volume is dominated by empty space, it is easier to achieve lower

predicted surface error with less predicted surface, etc. All evaluations are performed

on the highest voxel resolution of ∼ 5cm3.

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 58

5.4.2 Ablation Study

Hierarchy Probabilistic/ Autoregressive Input `1-Err `1-Err `1-Err `1-Err
Levels Deterministic Size (entire) (pred. surf.) (target surf.) (unk. space)

1 prob. (#quant=256) non-autoreg. 32 0.248 0.311 0.969 0.324
1 prob. (#quant=256) autoreg. 16 0.226 0.243 0.921 0.290
1 prob. (#quant=256) autoreg. 32 0.218 0.269 0.860 0.283
1 prob. (#quant=32) autoreg. 32 0.208 0.252 0.839 0.271
1 prob. (#quant=16) autoreg. 32 0.212 0.325 0.818 0.272
1 prob. (#quant=8) autoreg. 32 0.226 0.408 0.832 0.284
1 det. non-autoreg. 32 0.248 0.532 0.717 0.330
1 det. autoreg. 16 0.217 0.349 0.808 0.282
1 det. autoreg. 32 0.204 0.284 0.780 0.266

3 (gt train) prob. (#quant=32) autoreg. 32 0.336 0.840 0.902 0.359
3 (pred. train) prob. (#quant=32) autoreg. 32 0.202 0.405 0.673 0.251

3 (gt train) det. autoreg. 32 0.303 0.730 0.791 0.318
3 (pred. train) det. autoreg. 32 0.182 0.419 0.534 0.225

Table 5.1: Quantitative scene completion results for different variants of our
completion-only model evaluated on synthetic SUNCG ground truth data. We mea-
sure the `1 error against the ground truth distance field (in voxel space, up to trunca-
tion distance of 3 voxels). Using an autoregressive model with a three-level hierarchy
and large input context size gives the best performance.

We first evaluate different architecture variants for geometric scene completion in

Table 5.1. We test on 155 SUNCG test scenes, varying the following architectural

design choices:

• Hierarchy Levels: our three-level hierarchy (3) vs. a single 4.7cm-only level

(1). For the three-level hierarchy, we compare training on ground truth volumes

(gt train) vs. predicted volumes (pred. train) from the previous hierarchy level.

• Probabilistic/Deterministic: a probabilistic model (prob.) that outputs per-

voxel a discrete distribution over some number of quantized distance value bins

(#quant) vs. a deterministic model that outputs a single distance value per

voxel (det.).

• Autoregressive: our autoregressive model that predicts eight interleaved voxel

groups in sequence (autoreg.) vs. a non-autoregressive variant that predicts all

voxels independently (non-autoreg.).

• Input Size: the width and depth of the input context at train time, using

either 16 or 32 voxels

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 59

How much does the hierarchy help? While a single hierarchy level of 5cm only

produces passable completion results, we see a noticeable gain in completion quality

from a three-level hierarchy, in particular in the target surf. and unk. space errors.

In particular, the hierarchy helps predict considerably more missing surface regions,

as the problem of completing large holes is made easier at low resolutions.

How much does input context size help? We see that increasing the input

context size from 16 to 32 improves completion results with both probabilistic and

deterministic variants. Similar to the benefits of using a hierarchy, the more context

that is seen helps to infer missing global structure.

Does an autoregressive model help? Under both probabilistic and determinis-

tic variants, the autoregressive model outperforms the non-autoregressive one. This

underscores the benefits of modeling 3D generation as a product of conditional dis-

tributions, similar to what we see in the image domain [113, 114, 91, 82].

Is it better to have a deterministic or probabilistic model? For a probabilistic

model, reducing the number of quantization bins from 256 to 32 improves completion

(further reduction reduces the discrete distribution’s ability to approximate a contin-

uous distance field). Overall, for our scene completion task, a deterministic model

performs better than a probabilistic one. Intuitively we aim to capture a single output

mode—the physical reality behind the captured 3D scan.

All together, an autoregressive, deterministic, full hierarchy with the largest spa-

tial context provides the highest accuracy.

5.4.3 Results on Synthetic Scenes

We compare our method to alternative scene completion methods in Table 5.2. As a

baseline, we compare to Poisson Surface Reconstruction [45, 46]. We also compare to

3D-EPN, which was designed for completing single objects, as opposed to scenes [19].

Additionally, we compare to SSCNet, which completes the subvolume of a scene

viewed by a single depth frame [100]. For this last comparison, in order to complete

the entire scene, we fuse the predictions from all cameras of a test scene into one

volume, then evaluate `1 errors over this entire volume. Our method achieves lower

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 60

reconstruction error than all the other methods. Note that while jointly predicting

semantics along with completion does not improve on completion, Table 5.3 shows

that it significantly improves semantic segmentation performance.

Figure 5.5: Completion results on synthetic SUNCG scenes; left to right: input,
Poisson Surface Reconstruction [46], 3D-EPN [19], SSCNet [100], Ours, ground truth.

We show a qualitative comparison of our completion against state-of-the-art meth-

ods in Figure 5.5. For these results, we use the best performing architecture according

to Table 5.1. We can run our method on arbitrarily large scenes as test input, thus

predicting missing geometry in large areas even when input scans are highly partial,

and producing more complete results as well as more accurate local detail. Note that

our method is O(1) at test time in terms of forward passes; we run more efficiently

than previous methods which operate on fixed-size subvolumes and must iteratively

make predictions on subvolumes of a scene, typically O(wd) for a w × h× d scene.

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 61

Figure 5.6: Additional completion results on synthetic SUNCG scenes

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 62

Method `1-Err `1-Err `1-Err `1-Err
(entire) (pred. surf.) (target surf.) (unk. space)

Poisson Surface Reconstruction [45, 46] 0.531 1.178 1.695 0.512
SSCNet [100] 0.536 1.106 0.931 0.527

3D-EPN (unet) [19] 0.245 0.467 0.650 0.302
Ours 0.182 0.419 0.534 0.225

Table 5.2: Quantitative scene completion results for different methods on synthetic
SUNCG data. We measure the `1 error against the ground truth distance field in voxel
space, up to truncation distance of 3 voxels (i.e., 1 voxel corresponds to 4.7cm3). Our
method outperforms others in reconstruction error.

5.4.4 Results on Real Scenes

We also show qualitative completion results on real-world scans in Figure 5.7. We run

our model on scans from the publicly-available RGB-D ScanNet dataset [16], which

has data captured with an Occiptal Structure Sensor, similar to a Microsoft Kinect

or Intel PrimeSense sensor. Again, we use the best performing network according to

Table 5.1. We see that our model, trained only on synthetic data, learns to generalize

and transfer to real data.

Figure 5.7: Completion results on real-world scans from ScanNet [16]. Despite being
trained only on synthetic data, our model is also able to complete many missing
regions of real-world data.

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 63

5.5 Other Applications of ScanComplete: Seman-

tic Segmentation

We can also use our ScanComplete approach to predict other per-voxel character-

istics, in place of or in addition to per-voxel distance values for scan completion.

In particular, we leverage our scan completion approach to further inform semantic

reasoning about the scenes, inferring 3D semantic segmentation over the scans. We

can predict per-voxel semantic class labels from an input partial scan, in place of the

predicted distance field values, but moreover, we can jointly predict both a completed

scan and its semantic segmentation. In the latter case, we have two volumetric grids

output from our network, and the model is autoregressive on both completion and

semantics.

Figure 5.8: Semantic voxel labeling results on SUNCG; from left to right: input,
SSCNet [100], ScanNet [16], Ours, and ground truth.

In Table 5.3, we evaluate and compare our semantic segmentation on the SUNCG

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 64

Figure 5.9: Results on ScanNet for our completion and semantic voxel labeling pre-
dictions.

dataset. We use the same train/test split for SUNCG as before, and use the SUNCG

11-label set. While our semantic-only model already produces good semantic predic-

tions, we see a significant gain in performance when jointly predicting both completion

and semantics. Intuitively, explicitly learning the full scene geometry gives better se-

mantic performance as semantic segmentation is easier with complete models than

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 65

with partial data. This demonstrates how our approach towards scan completion

also enables further reasoning and understanding of these scenes, as we see in the

improvements in semantic segmentation.

Note that jointly predicting per-voxel semantic segmentation does not improve

completion results but rather produces similar completion results as when training

for completion only. In this case, an explicit semantic loss can artificially group

together objects that are very different geometrically as well as separate objects which

have similar parts; for instance, beanbag chairs, office chairs, and swings are all

grouped into ‘chair’, as well as bathtub and sink into ‘object’, and objects like chairs

and tables which often share common parts are separated. Moreover, intuitively,

our completion-only network must already learning relevant semantic information,

in order to achieve compelling completion results; we can see similar behavior from

shape completion exemplified in Fig. 4.5, where completion-only training already

groups together semantically similar objects without any explicit semantic input or

loss.

Figure 5.8 shows qualitative semantic segmentation results on SUNCG scenes.

Our ability to process the entire scene at test time, in contrast to previous methods

which operate on fixed subvolumes, along with the autoregressive, joint completion

task, produces more globally consistent and accurate voxel labels.

bed ceil. chair floor furn. obj. sofa table tv wall wind. avg
(vis) ScanNet [16] 44.8 90.1 32.5 75.2 41.3 25.4 51.3 42.4 9.1 60.5 4.5 43.4
(vis) SSCNet [100] 67.4 95.8 41.6 90.2 42.5 40.7 50.8 58.4 20.2 59.3 49.7 56.1

(vis) Ours [sem-only, no hier] 63.6 92.9 41.2 58.0 27.2 19.6 55.5 49.0 9.0 58.3 5.1 43.6
(vis) Ours [sem-only] 82.9 96.1 48.2 67.5 64.5 40.8 80.6 61.7 14.8 69.1 13.7 58.2
(vis) Ours [no hier] 70.3 97.6 58.9 63.0 46.6 34.1 74.5 66.5 40.9 86.5 43.1 62.0

(vis) Ours 80.1 97.8 63.4 94.3 59.8 51.2 77.6 65.4 32.4 84.1 48.3 68.6

(int) SSCNet [100] 65.6 81.2 48.2 76.4 49.5 49.8 61.1 57.4 14.4 74.0 36.6 55.8
(int) Ours [no hier] 68.6 96.9 55.4 71.6 43.5 36.3 75.4 68.2 33.0 88.4 33.1 60.9

(int) Ours 82.3 97.1 60.0 93.2 58.0 51.6 80.6 66.1 26.8 86.9 37.3 67.3

Table 5.3: Semantic labeling accuracy on SUNCG scenes. We measure per-voxel class
accuracies for both the voxels originally visible in the input partial scan (vis) as well
as the voxels in the intersection of our predictions, SSCNet, and ground truth (int).
Note that we show significant improvement over a semantic-only model that does not
perform completion (sem-only) as well as the current state-of-the-art.

We additionally apply our network, trained only on the synthetic SUNCG set, and

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 66

Figure 5.10: Additional results on Google Tango scans for our completion and se-
mantic voxel labeling predictions.

use it infer missing geometry and semantic segmentation in real-world RGB-D scans.

In Figure 5.9, we show results on several scenes on the publicly-available ScanNet [16]

dataset; the figure visualizes real input, completion (synthetically-trained), semantics

(synthetically-trained), and semantics (synthetically pre-trained and fine-tuned on

the ScanNet annotations). Figure 5.10 visualizes results on another sensor modality,

with scans taken from Google Tango sensors.

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 67

5.6 Discussion

This chapter demonstrated scan completion at scale. With ScanComplete, we exploit

a fully-convolutional neural network that decouples train and test resolutions, thus

allowing for variably-sized test scenes with unbounded spatial extents. In addition,

we use a coarse-to-fine prediction strategy combined with a volumetric autoregressive

network that leverages large spatial contexts while simultaneously predicting local

detail. As a result, we achieve unprecedented scene completion results.

We analyzed the necessary elements for generating coherent global structure along

with local detail. In particular, we see that the more input context that can be lever-

aged, the better. Because of this, we are able to attain improved completion in large

missing regions with a coarse-to-fine hierarchy. In addition, we gain additional benefit

from using an autoregressive model, which helps tractably model a joint distribution

over the voxels, as well as deterministic predictions. The deterministic advantage is

likely due to our problem scenario, where input partial scans often provide coverage

over most of the scene – albeit limited, partial coverage – and we aim to recover the

single physical reality behind these observations. For instance, a probabilistic model

may be better-suited for a problem in which only a small portion of the scene has

been observed, and full rooms may need to be generated. Finally, we demonstrated

that our scan completion approach helps to enable higher-level scene understanding,

significantly improving 3D semantic segmentation performance by jointly estimating

completion and semantics.

Our work is a starting point for obtaining high-quality 3D scans from partial

inputs, which is a typical problem for RGB-D reconstructions. One important aspect

for future work is to further improve output resolution. Currently, our final output

resolution of ∼ 5cm3 voxels is still not enough—ideally, we would use even higher

resolutions in order to resolve fine-scale objects, e.g., cups. In addition, end-to-end

training across all hierarchy levels would likely further improve performance with the

right joint optimization strategy. An interesting future direction could be to combine

purely generative models with conditioned input, such as GANs [34]. These networks

are somewhat challenging to train, particularly for higher resolutions in 3D space,

CHAPTER 5. COMPLETING LARGE-SCALE SCENES 68

although promising results have been shown for 2D image generation recently [44].

Another possible avenue is the incorporation of RGB information; for instance, one

could enforce shading constraints to obtain fine-scale detail by borrowing ideas from

recent shape-from-shading methods [122, 132].

Chapter 6

Conclusions

With the prevalence of 3D content in movies and games, and the newfound mo-

mentum of augmented and virtual reality, there will be an increasing demand for

3D content creation which cannot be tractably met through handcrafted, manual

design – especially in the case of mixed reality where a 3D model of the environ-

ment is required to enable accurate exploration and interactions. 3D scanning and

reconstruction provide a promising avenue towards addressing this problem, and in

this dissertation we studied a generative approach towards creating high-quality 3D

models from commodity RGB-D sensors, from scan acquisition with real-time 3D

reconstruction to a conditional generative deep learning approach for creating geo-

metrically complete 3D models faithful to the original physical environment. We first

acquire scans with a real-time reconstruction approach that produced globally con-

sistent 3D models. Such real-world 3D scans practically always suffer from varying

degrees of incompleteness, making them unsatisfactory for use in content creation

or mixed reality. We thus developed a generative formulation for scan completion

leveraging deep learning techniques in 3D to create high-quality, geometrically com-

plete meshes from partial scans. This provides a stepping stone towards fundamental

elements of mixed reality, e.g., realistic interactions for a virtual agent exploring the

environment or better informed physical simulations for sound or lighting, as well as

potentially aiding other applications such as robot navigation or, as demonstrated in

Chapter 5, improving semantic inference on 3D scans.

69

CHAPTER 6. CONCLUSIONS 70

Concretely, in Chapter 3 we described our scan acquisition approach, building

upon real-time 3D reconstruction to produce globally consistent 3D models of real-

world scenes. This enabled us to easily and efficiently capture a large number of scans

of real-world environments, which serve as the basis of our scan completion approach

towards generating high-quality 3D models.

In Chapter 4, we presented a generative model for producing complete models

from scans of 3D shapes. This model learns shared global structures of objects,

and can infer missing geometry even in large unknown regions – although it remains

constrained to operating on a fixed size volume.

Finally, in Chapter 5, we expanded this generative model to completion of 3D

scenes, removing the spatial constraints. The model produces compelling completion

results for a variety of 3D scans of rooms to building floors, with approximately

2.5cm `1 error from ground truth geometry. Furthermore, this model is capable of

domain adaptation, producing convincing complete meshes for real-world 3D scans –

our approach is now also a post-process option for in-house Google Tango scans.

Such a generative model for scan completion provides a first step for 3D scanning

for content creation and mixed reality, already enabling improved semantic scene un-

derstanding as we demonstrated with our scan completion approach in Chapter 5.

However, there are still many challenges towards making 3D models which could be

used as a final graphics asset in such applications rather than enabling higher-level

reasoning about 3D scenes. In terms of model geometry, we are nonetheless limited

by the dense volumetric representation for producing higher resolution models, as

scene data grows quickly intractable for storing a large number of scenes represented

densely at sub-centimeter voxel resolution. Recently several octree-based hierarchical

approaches have been proposed [84, 83, 107, 37] which show promise for using sparser

volumetric representations for deep learning. Currently these approaches largely fo-

cus on producing high resolution for objects or small scenes (e.g., 2563 volumes), and

there is significant room for study in applying them for large-scale scenes. Another

possibility is to take inspiration from the widely used spatial voxel hashing representa-

tion [74] for 3D reconstruction, which could provide an alternative sparse volumetric

representation.

CHAPTER 6. CONCLUSIONS 71

Additionally, in this dissertation we have focused on modeling scan geometry, but

color and texture information are not only beneficial for understanding scenes but also

are essential for creating models to be visually consumed. Here there are two main

questions which can be intercorrelated: how to use color information as input to best

understand a scene, and how to generate high-quality colored output. Again, we come

to questions of data representation. While our ∼ 5cm voxel distance field can capture

principal scene geometry, per-voxel colors at such resolution become extremely over-

smoothed, losing visual distinctness and producing unsatisfactory visuals. As input

we can consider using the original color images captured, and leveraging a combina-

tion of both 2D color features and 3D geometric features to provide complementary

reasoning about a scene [17]. In this case we could also potentially leverage well-

developed 2D convolutional neural networks and the vast image datasets currently

available. Another alternative to a voxel-based 3D representation is textured meshes,

which are consumed by typical graphics applications, but the non-euclidean nature

of this data remains challenging. Several early approaches have been developed for

deep learning on mesh data structures [7], although the field is still nascent.

The question of data representation in 3D for generative deep learning is a funda-

mental one, and still remains open. Here, there are many possibilities for innovation,

and such problems are those that must be addressed to make further progress.

Appendix A

BundleFusion Experiment Details

Convergence After adding a new global keyframe, our approach requires only a few

iterations to reach convergence. Figure A.1 shows convergence plots for three of the

used test sequences (cf. Figure 3.3); the behavior generalizes to all other sequences.

We achieve this real-time performance with the combination of our tailored data-

parallel Gauss-Newton solver (efficiently handling millions of residuals and solving for

over a hundred thousand unknowns), a sparse-to-dense strategy enabling convergence

in only a few iterations, and a local-to-global strategy which efficiently decomposes

the problem. Note that recent work provides detailed intuition as to why hand-crafted

optimizers outperform existing, general solver libraries [22].

Figure A.1: Convergence analysis of the global keyframe optimization (log scale):
peaks correspond to new global keyframes. Only a few iterations are required for
convergence.

Additionally, we evaluate the performance of our tailored GPU-based solver against

the widely-used, CPU-based Ceres solver [1]. Figure A.2 shows the performance of

72

APPENDIX A. BUNDLEFUSION EXPERIMENT DETAILS 73

Figure A.2: Performance comparison of our tailored GPU-based solver to Ceres [1].
Both solvers are evaluated over the sparse energy term for 101 keyframes, involving
600 variables and 16339 residuals, with poses initialized to the identity.

both solvers for the sparse energy over 101 keyframes, comprising 600 variables and

16339 residuals, with poses initialized to the identity. Note that this behavior is

representative of other sparse energy solves. For Ceres, we use the default Levenberg-

Marquardt with a sparse normal Cholesky linear solver (the fastest of the linear solver

options for this problem). While our solver takes a couple more iterations to converge

without the Levenberg-Marquardt damping strategy, it still runs ≈ 20 times faster

than Ceres while converging to the same energy minimum.

Memory Consumption We evaluate the memory consumption of our globally

consistent reconstruction approach on our eight captured sequences, see Table A.1.

The most significant required memory resides in RAM (CPU), i.e., 20GB for the

Apt 0 sequence. It stores all RGB-D frames and depends linearly on the length

of the sequence. The required device memory (GPU) is much smaller, e.g., 5.3GB

(4mm voxels) and 1.9GB (1cm voxels) for the same sequence. This is well within

the limits of modern graphics cards (e.g., 12 GB for GTX Titan X). We also give

the amount of memory required to store and manage the TSDF (Rec) and to run

the camera pose optimization, both for the sparse term (Opt-s) and the dense term

(Opt-d). The footprint for storing the SIFT keypoints and correspondences (included

APPENDIX A. BUNDLEFUSION EXPERIMENT DETAILS 74

Table A.1: Memory consumption (GB) for the captured sequences.
GPU CPU

1cm 4mm
Opt-d Opt-s Rec

∑
Rec

∑
Apt 0 1.4 0.031 0.5 1.9 3.9 5.3 20.0
Apt 1 1.4 0.031 0.4 1.8 3.2 4.6 20.1
Apt 2 0.6 0.012 0.7 1.4 6.0 6.7 9.3

Copyroom 0.7 0.016 0.3 1.1 1.8 2.6 10.5
Office 0 1.0 0.021 0.4 1.4 2.5 3.5 14.4
Office 1 0.9 0.024 0.4 1.4 2.9 3.9 13.4
Office 2 0.6 0.011 0.4 1.0 3.0 3.6 8.2
Office 3 0.6 0.011 0.4 1.0 2.7 3.3 8.9

in Opt(s)) is negligibly small; i.e, 31MB for Apt 0. The longest reconstructed se-

quence (home at scan1 2013 jan 1) is part of the SUN3D dataset [124], consisting of

14785 frames (≈ 8.2 minutes scan time @30Hz). This sequence has a CPU memory

footprint of 34.7GB and requires 7.3GB of GPU memory (4mm voxels) for tracking

and reconstruction.

Precision and Recall of Loop Closures Tab. A.2 gives the precision (i.e., the

percentage of correct chunk pair correspondence detections from the set of established

correspondences) and recall (i.e., the percentage of detected chunk pair correspon-

dences from the set of ground truth correspondences), on the loop closure set of the

augmented ICL-NUIM dataset. A chunk pair correspondence is determined to be in

the ground truth set if their geometry overlaps by ≥ 30% according to the ground

truth trajectory, and a proposed chunk pair correspondence is determined to be cor-

rect if it lies in the ground truth set with reprojection error less than 0.2m, following

[12]. We show our registration performance after running the SIFT matcher (Sift

Raw), our correspondence filters – Key Point Correspondence Filter (SIFT + KF)

and Surface Area and Dense Verification (SIFT + Verify) –, and the final result after

the optimization residual pruning (Opt). As can be seen, all steps of the globally

consistent camera tracking increase precision while maintaining sufficient recall.

APPENDIX A. BUNDLEFUSION EXPERIMENT DETAILS 75

Table A.2: Loop closure precision and recall on the synthetic augmented ICL-NUIM
Dataset [12].

Sift Raw Sift + KF Sift + Verify Opt

Living 1
Precision (%) 27.0 98.0 98.2 100

Recall (%) 47.5 40.3 39.5 39.3

Living 2
Precision (%) 25.3 92.1 92.4 100

Recall (%) 49.3 47.4 45.9 45.7

Office 1
Precision (%) 14.1 97.7 99.6 100

Recall (%) 49.1 48.7 48.0 47.7

Office 2
Precision (%) 10.9 90.2 96.2 100

Recall (%) 46.0 42.4 42.1 42.0

Sparse vs. Dense Tracking In Figure A.3, we evaluate the influence of the dense

tracking component of our energy function. While globally drift-free reconstructions

can be obtained by sparse tracking only, the dense alignment term leads to more

refined local results.

Figure A.3: Comparison of Sparse vs. Dense Alignment: the proposed dense intra-
and inter- chunk alignment (top) leads to higher quality reconstructions than only
the sparse alignment step (bottom).

APPENDIX A. BUNDLEFUSION EXPERIMENT DETAILS 76

Figure A.4: Comparison of different voxel resolutions: 4mm voxel resolution (left)
leads to higher-fidelity reconstructions than the coarser 1cm resolution (right). Note
the generally sharper texture and the more refined geometry in case of 4mm voxels.

Voxel Resolution The impact of voxel resolution on reconstruction quality is

shown in Figure A.4. As a default, we use a voxel resolution of 4mm for all re-

constructions. While 1cm voxels reduce memory consumption, the quality of the

reconstruction is slightly impaired.

Appendix B

Acquiring a Large-Scale Dataset of

3D Scans

3D scene understanding has recently begun to gain momentum. Research along such

semantic understanding is heavily facilitated by the rapid progress of modern machine

learning methods, such as neural models. One key to successfully applying theses

approaches is the availability of large, labeled datasets. While much effort has been

made on 2D datasets [27, 53, 59], where images can be downloaded from the web and

directly annotated, the situation for 3D data is more challenging. Thus, many of the

current RGB-D datasets [96, 124, 99, 39] are orders of magnitude smaller than their

2D counterparts.

One of the reasons that current 3D datasets are small is because their capture

requires much more effort, and efficiently providing (dense) annotations in 3D is non-

trivial. Thus, existing work on 3D datasets often fall back to polygon or bounding

box annotations on 2.5D RGB-D images [96, 124, 99], rather than directly annotating

in 3D. In the latter case, labels are added manually by expert users (typically by the

paper authors) [39, 92] which limits their overall size and scalability.

Thus we exploit the real-time reconstruction capabilities of our BundleFusion ap-

proach (described in Chapter 3) to create globally-consistent 3D reconstructions to

power the construction of a large-scale dataset of richly-annotated RGB-D scans:

77

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 78

Figure B.1: Example spaces in ScanNet, reconstructed with BundleFusion (c.f. Chap-
ter 3) and annotated with instance-level object category labels through our crowd-
sourced annotation framework.

ScanNet. ScanNet comprises 2.5M RGB-D images in 1513 scans of real-world envi-

ronments acquired in 707 distinct spaces. The sheer magnitude of this dataset is larger

than any other [70, 104, 124, 98, 3, 92, 39]. However, what makes it particularly valu-

able for research in scene understanding is its annotation with estimated calibration

parameters, camera poses, 3D surface reconstructions, textured meshes, and dense

object-level semantic segmentations (see Fig. B.2). The semantic segmentations are

more than an order of magnitude larger than any previous RGB-D dataset.

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 79

Dataset Size Labels Annotation Tool Reconstruction

NYU v2 [70] 464 scans 1449 frames 2D LabelMe-style [90] none
TUM [104] 47 scans none - aligned poses (Vicon)

SUN 3D [124] 415 scans 8 scans 2D polygons aligned poses [124]
SUN RGB-D [98] 10k frames 10k frames 2D polygons + bounding boxes aligned poses [124]
BuildingParser [3] 265 rooms 265 rooms CloudCompare [32] point cloud

PiGraphs [92] 26 scans 26 scans dense 3D, by the authors [92] dense 3D [74]
SceneNN [39] 100 scans 100 scans dense 3D, by the authors [73] dense 3D [13]

ScanNet (ours) 1513 scans 1513 scans dense 3D, crowd-sourced MTurk dense 3D [18]
2.5M frames labels also proj. to 2D frames

Table B.1: Overview of RGB-D datasets for 3D reconstruction and semantic scene
understanding.

B.1 Data Acquisition

How can we design a framework that allows many people to collect and reconstruct

large amounts of RGB-D data? In order to collect a large-scale dataset, we aim to

allow untrained users to capture 3D scans of indoor scenes with commodity hardware.

This goal drives our framework design: the RGB-D scanning system must be easy to

use, and the data processing robust, automatic, with data flow handled by a tracking

server. Thus, in our data acquisition pipeline, a user uses an app on an iPad mounted

with a depth camera to acquire RGB-D video; the RGB-D data is then processed

offline to produce a 3D reconstruction of the scene, ready to be semantically labeled.

We discuss the various design choices below.

RGB-D Scanning 3D Reconstruction

Upload

Segmentation Semantic Labeling

Crowd-
sourcing

Figure B.2: RGB-D reconstruction and semantic annotation framework overview.
Left: a novice user uses a handheld RGB-D device with our scanning interface to
scan an environment. Mid: RGB-D sequences are uploaded to a processing server
which produces 3D surface mesh reconstructions and their surface segmentations.
Right: Semantic annotation tasks are issued for crowdsourcing to obtain instance-
level object category annotations.

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 80

B.1.1 RGB-D Scanning

Hardware. There is a spectrum of choices for RGB-D sensor hardware. Our

requirement for deployment to large groups of inexperienced users necessitates a

portable and low-cost RGB-D sensor setup. We use the Structure sensor1, a com-

modity range sensor with design similar to the Microsoft Kinect v1. We attach this

sensor to a handheld device, in our case, an iPad Air2 (see Fig. B.2 left). The

iPad RGB camera data is temporally synchronized with the depth sensor, providing

synchronized depth and color capture at 30Hz. Depth frames are captured at a reso-

lution of 640× 480 and color at 1296× 968 pixels. Note that while feature detection

and matching for 3D reconstruction is typically easier with constant exposure and

white-balancing, we enable auto-white balance and auto-exposure by default, which

we found to be crucial for avoiding over- or under-saturation (e.g., when there is an

open window or strong light in the scene).

Calibration. Our use of commodity RGB-D sensors necessitates unwarping of

depth data and alignment of depth and color data. Since we aim for novice users,

calibration in controlled lab conditions becomes impractical; instead, we focus on a

portable, reproducible setup. Thus the user only needs to print out a checkerboard

pattern, place it on a large, flat surface, and capture an RGB-D sequence viewing

the surface from close to far away (e.g., 0.5m to 6m). This sequence, as well as a

set of infrared and color frame pairs viewing the checkerboard, are uploaded by the

user as input to the calibration. Our system then runs a calibration procedure based

on [108, 23] to obtain intrinsic parameters for both depth and color sensors, and an

extrinsic transformation of depth to color. We find that this calibration procedure is

easy for users and results in improved data and consequently enhanced reconstruction

quality.

User Interface. To make the capture process simple for untrained users, we de-

signed an iOS app with a simple live RGB-D video capture UI (see Fig. B.2 left).

The user provides a name and scene type for the current scan and proceeds to record

1 http://structure.io/

http://structure.io/

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 81

a sequence. During scanning, a log-scale RGB feature detector point metric is shown

as a “featurefulness” bar to provide a rough measure of tracking robustness and re-

construction quality in different regions being scanned. This feature was critical for

providing intuition to users who are not familiar with the constraints and limitations

of 3D reconstruction algorithms.

We additionally provide functionality to upload and delete individual captured

sequences, as well as uploading all captured sequences. Upon confirmation of a suc-

cessful upload (all files confirmed received by the data processing server), the corre-

sponding files are automatically deleted from the scanning device.

Storage. We store scans as compressed RGB-D data on the device flash memory so

that a stable internet connection is not required during scanning. The user can upload

scans to the processing server when convenient by pressing an “upload” button. Our

sensor units used 128GB iPad Air2 devices, allowing for several hours of recorded

RGB-D video. In practice, the bottleneck was sensor battery life rather than storage

space. Depth is recorded as 16-bit unsigned short values and stored using standard

zLib compression. RGB data is encoded with the H.264 codec with a high bitrate

of 15Mbps to prevent encoding artifacts. In addition to the RGB-D frames, we also

record Inertial Measurement Unit (IMU) data, including acceleration, and angular

velocities, from the Apple SDK. Timestamps are recorded for IMU, color, and depth

images.

B.1.2 Surface Reconstruction

Once data has been uploaded from the iPad to our server, the first processing step is

to estimate a densely-reconstructed 3D surface mesh and 6-DoF camera poses for all

RGB-D frames. To conform with the goal for an automated and scalable framework,

we choose methods that favor robustness and processing speed such that uploaded

recordings can be processed at near real-time rates with little supervision.

Dense Reconstruction. We use volumetric fusion [15] to perform the dense re-

construction, since this approach is widely used in the context of commodity RGB-D

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 82

data. There is a large variety of algorithms targeting this scenario [72, 118, 9, 74, 42,

120, 52, 13, 120, 41, 18]. Our BundleFusion reconstruction approach (c.f. Chapter 3)

was designed for this setup: it produces 3D reconstructions for portable commodity

sensors like the Structure sensor, and provides real-time speed while being reasonably

robust given handheld RGB-D video data. The real-time performance is critical, as

this allows efficient reconstruction of thousands (or more than thousands) of scans.

For each input scan, we first run BundleFusion [18] at a voxel resolution of 1cm3.

This produces accurate pose alignments which we then use to perform volumetric

integration through VoxelHashing [74] and extract a high resolution surface mesh

using Marching Cubes [61] on the implicit TSDF (4mm3 voxels). The mesh is then

automatically cleaned up with a set of filtering steps to merge close vertices, delete

duplicate and isolated mesh parts, and finally to downsample the mesh to high,

medium, and low resolution versions (each level reducing the number of faces by

half). These filtering steps are automatically applied through MeshLab2 scripts.

Orientation. After the surface mesh is extracted, we automatically align it and all

camera poses to a common coordinate frame with the z-axis as the up vector. To

perform this alignment, we first extract all planar regions of sufficient size, merge re-

gions defined by the same plane, and sort them by normal (we use a normal threshold

of 25◦ and a planar offset threshold of 5cm). We then determine a prior for the up

vector by projecting the IMU gravity vectors of all frames into the coordinates of the

first frame. This allows us to select the floor plane based on the scan bounding box

and the normal most similar to the IMU up vector direction.

Validation. This reconstruction process is automatically triggered when a scan is

uploaded to the processing server and runs unsupervised. We automatically discard

scan sequences that are short, have high residual reconstruction error, or have low

percentage of aligned frames. We then manually check for and discard reconstructions

with noticeable misalignments. Note that compared to other RGB-D datasets – e.g.,

NYU [70] or SUN RGB-D [98] –, we do not pre-process the raw depth data. Although

2 http://www.meshlab.net/

http://www.meshlab.net/

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 83

methods like cross-bilateral filtering can lead to visually more appealing results and

reduce holes, they often hallucinate false measures. Instead, we use volumetric fusion

as part of the 3D reconstruction to regularize out noise from independent depth

frames.

B.2 Data Annotation

How can we design an annotation framework to scale to the thousands of scans and

millions of frames that we have collected? Similar to large-scale data collection and

annotation efforts for images [90, 20, 59], we look to crowdsourcing to efficiently

provide annotations for our RGB-D data. In particular, in order to efficiently annotate

our RGB-D scan data for both 2D and 3D tasks, we construct our semantic annotation

task in 3D, on the reconstructed meshes. Thus only the 1513 scans need to be labeled,

and the labels can be projected back into the original RGB-D frames to provide pixel-

level semantic segmentation annotations in 2D. This is in contrast to much prior work

that uses 2D polygon annotations on RGB or RGB-D images, or 3D bounding box

annotations.

After a reconstruction is produced by the processing server, we issue an annota-

tion HIT (Human Intelligence Tasks) on the Amazon Mechanical Turk crowdsourc-

ing market for the task of instance-level object category labeling of all surfaces in

the reconstruction. The annotations are crowdsourced using web-based interfaces to

maintain the overall scalability of the framework.

We developed a WebGL interface that takes as input the low-resolution surface

mesh of a given reconstruction and a conservative over-segmentation of the mesh using

a normal-based graph cut method [28, 43]. The crowd worker then selects segments

to annotate with instance-level object category labels (see Fig. B.3). Each worker is

required to annotate at least 25% of the surfaces in a reconstruction, and encouraged

to annotate more than 50% before submission. Each scan is annotated by multiple

workers (scans in ScanNet are annotated by 2.3 workers on average).

A key challenge in designing this interface is to enable efficient annotation by

workers who have no prior experience with the task, or 3D interfaces in general. Our

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 84

Figure B.3: Our web-based crowdsourcing interface for annotating a scene with
instance-level object category labels. The right panel lists object instances already
annotated in the scene with matching painted colors. This annotation is in progress
at ≈ 35%, with gray regions indicating unannotated surfaces.

interface uses a simple painting metaphor where clicking and dragging over surfaces

paints segments with a given label and corresponding color. This functions similarly

to 2D painting and allows for erasing and modifying existing regions.

Another design requirement is to allow for freeform text labels, to reduce the in-

herent bias and scalability issues of pre-selected label lists. At the same time, it is

desirable to guide users for consistency and coverage of basic object types. To achieve

this, the interface provides autocomplete functionality over all labels previously pro-

vided by other workers that pass a frequency threshold (> 5 annotations). Workers

are always allowed to add arbitrary text labels to ensure coverage and allow expansion

of the label set.

Several additional design details are important to ensure usability by novice work-

ers. First, a simple distance check for connectedness is used to disallow labeling of

disconnected surfaces with the same label. Earlier experiments without this constraint

resulted in two undesirable behaviors: cheating by painting many surfaces with a few

labels, and labeling of multiple object instances with the same label. Second, the

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 85

3D nature of the data is challenging for novice users. Therefore, we first show a full

turntable rotation of each reconstruction and instruct workers to change the view us-

ing a rotating turntable metaphor. Without the turntable rotation animation, many

workers only annotated from the initial view and never used camera controls despite

the provided instructions.

B.3 Impact of Real-world Data for 3D Semantic

Understanding

Now that we have collected and annotated a large set of RGB-D scans for our ScanNet

dataset, we explore the impact of using such real-world training data for various 3D

semantic understanding tasks. In particular, we discuss our benchmark tasks of object

classification and 3D semantic scene segmentation, and demonstrate the importance

of real-world training data.

B.3.1 3D Object Classification

With the availability of large-scale synthetic 3D shape datasets such as [123, 8] and

recent advances in 3D deep learning, research has developed approaches to classify

objects using only geometric data with volumetric deep nets [123, 105, 64, 19, 79].

All of these methods train on purely synthetic data and focus on isolated objects.

Although they show limited evaluation on real-world data, a larger evaluation on

realistic scanning data is largely missing. When training data is synthetic and test is

performed on real data, there is also a significant discrepancy of test performance, as

data characteristics, such as noise and occlusions patterns, are inherently different.

With ScanNet, we close this gap as we have captured a sufficiently large amount of

3D data to use real-world RGB-D input for both training and test sets. For this task,

we use the oriented bounding boxes of annotated objects in ScanNet, and isolate the

contained geometry. As a result, we obtain local volumes around each object instance

for which we know the annotated category. The goal of the task is to classify the

object represented by a set of scanned points within a given bounding box. For this

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 86

benchmark, we use 17 categories, with 9, 677 train instances and 2, 606 test instances.

Network and training. For object classification, we follow the network architec-

ture of the 3D Network-in-Network of [79], without the multi-orientation pooling step.

In order to classify partial data, we add a second channel to the 303 occupancy grid

input, indicating known and unknown regions (with 1 and 0, respectively) according

to the camera scanning trajectory. As in Qi et al. [79], we use an SGD solver with

learning rate 0.01 and momentum 0.9, decaying the learning rate by half every 20

epochs, and training the model for 200 epochs. We augment training samples with

12 instances of different rotations (including both elevation and tilt), resulting in a

total training set of 111, 660 samples.

Benchmark performance. As a baseline evaluation, we run the 3D CNN approach

of Qi et al. [79]. Table B.2 shows the performance of 3D shape classification with

different train and test sets. The first two columns show results on synthetic test data

from ShapeNet [8] including both complete and partial data. Naturally, training with

the corresponding synthetic counterparts of ShapeNet provides the best performance,

as data characteristics are shared. However, the more interesting case is real-world

test data (rightmost two columns); here, we show results on test sets of SceneNN [39]

and ScanNet. First, we see that training on synthetic data allows only for limited

knowledge transfer (first two rows). Second, although the relatively small SceneNN

dataset is able to learn within its own dataset to a reasonable degree, it does not

generalize to the larger variety of environments found in ScanNet. On the other

hand, training on ScanNet translates well to testing on SceneNN; as a result, the

test results on SceneNN are significantly improved by using the training data from

ScanNet. Interestingly, these results can be slightly improved when mixing training

data of ScanNet with partial scans of ShapeNet (last row), indicating that there is

room for more data to improve performance.

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 87

Synthetic Test Sets Real Test Sets

Training Set ShapeNet ShapeNet Partial SceneNN ScanNet

ShapeNet 92.5 37.6 68.2 39.5
ShapeNet Partial 88.5 92.1 72.7 45.7
SceneNN 19.9 27.7 69.8 48.2
NYU 26.2 26.6 72.7 53.2
ScanNet 21.4 31.0 78.8 74.9
ScanNet+ShapeNet
Par.

79.7 89.8 81.2 76.6

Table B.2: 3D object classification benchmark performance. Percentages give the
classification accuracy over all models in each test set (average instance accuracy).

B.3.2 3D Semantic Scene Segmentation

A common task on RGB data is semantic segmentation (i.e. labeling pixels with

semantic classes) [60]. With our data, we can extend this task to 3D, where the goal

is to predict the semantic object label on a per-voxel basis. This task of predicting a

semantic class for each visible 3D voxel has been addressed by some prior work, but

using hand-crafted features to predict a small number of classes [48, 112], or focusing

on outdoor environments [11, 6].

Data Generation. We first voxelize a scene and obtain a dense voxel grid with

2cm3 voxels, where every voxel stores its TSDF value and object class annotation

(empty space and unlabeled surface points have their own respective classes). We

now extract subvolumes of the scene volume, of dimension 2 × 31 × 31 × 62 and

spatial extent 1.5m × 1.5m × 3m; i.e., a voxel size of ≈ 4.8cm3; the two channels rep-

resent the occupancy and known/unknown space according to the camera trajectory.

These sample volumes are aligned with the xy-ground plane.For ground truth data

generation, voxel labels are propagated from the scene voxelization to these sample

volumes. The samples are chosen that ≥ 2% of the voxels are occupied (i.e., on

the surface), and ≥ 70% of these surface voxels have valid annotations; samples not

meeting these criteria are discarded. Across ScanNet, we generate 93, 721 subvolume

examples for training, augmented by 8 rotations each (i.e., 749, 768 training samples),

from 1201 training scenes. In addition, we extract 18, 750 sample volumes for testing,

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 88

Figure B.4: 3D semantic scene segmentation of 3D scans in ScanNet using our 3D
CNN architecture. Voxel colors indicate predicted or ground truth category.

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 89

Class % of Test Scenes Accuracy
Floor 35.7% 90.3%
Wall 38.8% 70.1%
Chair 3.8% 69.3%
Sofa 2.5% 75.7%

Table 3.3% 68.4%
Door 2.2% 48.9%

Cabinet 2.4% 49.8%
Bed 2.0% 62.4%
Desk 1.7% 36.8%
Toilet 0.2% 69.9%
Sink 0.2% 39.4%

Window 0.4% 20.1%
Picture 0.2% 3.4%

Bookshelf 1.6% 64.6%
Curtain 0.7% 7.0%

Shower Curtain 0.04% 46.8%
Counter 0.6% 32.1%

Refrigerator 0.3% 66.4%
Bathtub 0.2% 74.3%

OtherFurniture 2.9% 19.5%
Total - 73.0%

Table B.3: 3D semantic scene segmentation accuracy on ScanNet test scenes.

which are also augmented by 8 rotations each (i.e., 150, 000 test samples) from 312

test scenes. We have 20 object class labels plus 1 class for free space.

Network and training. For the 3D semantic scene segmentation task, we propose

a network which predicts class labels for a column of voxels in a scene according to

the occupancy characteristics of the voxels’ neighborhood. In order to infer labels

for an entire scene, we use the network to predict a label for every voxel column at

test time (i.e., every xy position that has voxels on the surface). The network takes

as input a 2 × 31 × 31 × 62 volume and uses a series of fully convolutional layers to

simultaneously predict class scores for the center column of 62 voxels. We use ReLU

and batch normalization for all layers (except the last) in the network. To account

for the unbalanced training data over the class labels, we weight the cross entropy

loss with the inverse log of the histogram of the train data.

We use an SGD solver with learning rate 0.01 and momentum 0.9, decaying the

learning rate by half every 20 epochs, and train the model for 100 epochs.

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 90

Quantitative Results. The goal of this task is to predict semantic labels for all

visible surface voxels in a given 3D scene; i.e., every voxel on a visible surface receives

one of the 20 object class labels. We use NYU2 labels, and list voxel classification

results on ScanNet in Table B.3. We achieve a voxel classification accuracy of 73.0%,

which is based purely on the geometric input (no color is used).

Note that we do not explicitly enforce prediction consistency between neighboring

voxel columns when the test volume is slid across the xy plane. This could be achieved

with a volumetric CRF [78], as used in [112]; however, our goal in this task to focus

exclusively on the per-voxel classification accuracy.

B.4 Creating a 2D/3D Benchmark

In order to create a full benchmark challenge for ScanNet, providing consistent bench-

marks and evaluation for various scene understanding tasks, we added several new

improvements and additions.

2D/3D benchmark tasks. To leverage the full potential of the RGB-D scan data

of ScanNet, which ties together both 2D and 3D data, our benchmark challenge cov-

ers several 2D and 3D tasks: 2D semantic segmentation, 2D instance segmentation,

3D semantic segmentation, 3D instance segmentation, and scene type classification.

Evaluation for the semantic label and instance segmentation tasks runs in the re-

spective domain, but a variety of input data types can be used, e.g., multiple images

leveraging the video nature of the scans, the 3D geometry, etc.

Hidden test set. We collected 100 new scans, each of different scenes, spanning

20 different scene types. Only the raw RGB-D data and 3D reconstructions are

publicly released, enabling a more consistent evaluation for all methods over this test

set. Note that the scan collection was greatly facilitated by our automated data

processing pipeline, and collection of new scans is largely bottlenecked by finding and

traveling to new scenes.

APPENDIX B. ACQUIRING A LARGE-SCALE DATASET OF 3D SCANS 91

Updated annotations. We updated the scene type annotations to a consistent 20-

class set of scene types, as knowledge of the types of scenes that were scanned enabled

more precise recategorization from the original 10 types. Additionally, we leveraged

new ‘merge’ functionality and fixup annotation tasks to improve the consistency and

coverage of the dense 3D semantic annotations, bringing surface annotation coverage

from ≈ 60% to ≈ 90%.

Automated evaluation server. To provide consistent evaluation over all bench-

mark tasks, we developed an automated evaluation server where users can submit

the results on the hidden test set to be evaluated and ranked. 2D evaluation runs

per-pixel in the image domain, and for 3D we designed the evaluation to run over the

reconstructed mesh vertices. Since data formats are not as standardized for 3D as for

2D, this choice was made since it allows users to submit text files containing predic-

tions for each vertex in the order provided in the mesh reconstruction. Moreover, the

original annotations were provided on the mesh vertices, and since the meshes were

originally extracted from TSDFs, the vertices and faces are relatively regular. This

will enable easy and impartial evaluation of various approaches, and we hope it will

encourage further work into various scene understanding directions.

Bibliography

[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://

ceres-solver.org, 2013.

[2] John Amanatides, Andrew Woo, et al. A fast voxel traversal algorithm for ray

tracing. In Eurographics, volume 87, pages 3–10, 1987.

[3] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin

Fischer, and Silvio Savarese. 3d semantic parsing of large-scale indoor spaces.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 1534–1543, 2016.

[4] Christopher Batty. SDFGen. https://github.com/christopherbatty/

SDFGen.

[5] Paul J Besl and Neil D McKay. A method for registration of 3-D shapes. IEEE

Trans. PAMI, 14(2):239–256, 1992.

[6] Maros Blaha, Christoph Vogel, Audrey Richard, Jan D Wegner, Thomas Pock,

and Konrad Schindler. Large-scale semantic 3d reconstruction: an adaptive

multi-resolution model for multi-class volumetric labeling. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 3176–

3184, 2016.

[7] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE

Signal Processing Magazine, 34(4):18–42, 2017.

92

http://ceres-solver.org
http://ceres-solver.org
https://github.com/christopherbatty/SDFGen
https://github.com/christopherbatty/SDFGen

BIBLIOGRAPHY 93

[8] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-

iong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model

Repository. Technical report, 2015.

[9] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scalable real-time

volumetric surface reconstruction. ACM Transactions on Graphics (TOG),

32(4):113, 2013.

[10] Yang Chen and Gérard Medioni. Object modelling by registration of multiple

range images. Image and vision computing, 10(3):145–155, 1992.

[11] Ian Cherabier, Christian Häne, Martin R Oswald, and Marc Pollefeys. Multi-

label semantic 3d reconstruction using voxel blocks. In 3D Vision (3DV), 2016

Fourth International Conference on, pages 601–610. IEEE, 2016.

[12] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust reconstruction of

indoor scenes. June 2015.

[13] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust reconstruction

of indoor scenes. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5556–5565. IEEE, 2015.

[14] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large

dataset of object scans. arXiv preprint arXiv:1602.02481, 2016.

[15] Brian Curless and Marc Levoy. A volumetric method for building complex

models from range images. In Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, pages 303–312. ACM, 1996.

[16] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas

Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstruc-

tions of indoor scenes. In Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE, 2017.

BIBLIOGRAPHY 94

[17] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view prediction for

3d semantic scene segmentation. In Proceedings of the European Conference on

Computer Vision (ECCV), 2018.

[18] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Chris-

tian Theobalt. Bundlefusion: Real-time globally consistent 3d reconstruction

using on-the-fly surface reintegration. ACM Transactions on Graphics (TOG),

36(3):24, 2017.

[19] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion

using 3d-encoder-predictor cnns and shape synthesis. In Proc. Computer Vision

and Pattern Recognition (CVPR), IEEE, 2017.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE,

2009.

[21] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image

models using a laplacian pyramid of adversarial networks. In Advances in neural

information processing systems, pages 1486–1494, 2015.

[22] Zachary DeVito, Michael Mara, Michael Zollöfer, Gilbert Bernstein, Christian

Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Nießner. Opt: A

domain specific language for non-linear least squares optimization in graphics

and imaging. ACM Transactions on Graphics 2017 (TOG), 2017.

[23] Maurilio Di Cicco, Luca Iocchi, and Giorgio Grisetti. Non-parametric calibra-

tion for depth sensors. Robotics and Autonomous Systems, 74:309–317, 2015.

[24] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to

generate chairs with convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1538–1546,

2015.

BIBLIOGRAPHY 95

[25] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-scale di-

rect monocular SLAM. In European Conference on Computer Vision, Septem-

ber 2014.

[26] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-dense visual odometry

for a monocular camera. In Proc. ICCV, pages 1449–1456. IEEE, 2013.

[27] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The PASCAL visual object classes (VOC) challenge. In-

ternational journal of computer vision, 88(2):303–338, 2010.

[28] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image

segmentation. International Journal of Computer Vision, 59(2):167–181, 2004.

[29] Nicola Fioraio, Jonathan Taylor, Andrew Fitzgibbon, Luigi Di Stefano, and

Shahram Izadi. Large-scale and drift-free surface reconstruction using online

subvolume registration. June 2015.

[30] Michael Firman, Oisin Mac Aodha, Simon Julier, and Gabriel J Brostow. Struc-

tured prediction of unobserved voxels from a single depth image. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

5431–5440, 2016.

[31] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct

monocular visual odometry. In Proc. ICRA, pages 15–22. IEEE, 2014.

[32] Daniel Girardeau-Montaut. CloudCompare3D point cloud and mesh processing

software. OpenSource Project, 2011.

[33] Ben Glocker, Jamie Shotton, Antonio Criminisi, and Shahram Izadi. Real-time

rgb-d camera relocalization via randomized ferns for keyframe encoding. TVCG,

21(5):571–583, 2015.

BIBLIOGRAPHY 96

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in Neural Information Processing Systems, pages

2672–2680, 2014.

[35] Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos Kalogerakis, and Yizhou

Yu. High Resolution Shape Completion Using Deep Neural Networks for Global

Structure and Local Geometry Inference. In IEEE International Conference on

Computer Vision (ICCV), 2017.

[36] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and

Roberto Cipolla. Scenenet: Understanding real world indoor scenes with syn-

thetic data. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4077–4085, 2016.

[37] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface

prediction for 3d object reconstruction. In 3D Vision (3DV), 2017 International

Conference on, pages 412–420. IEEE, 2017.

[38] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using

Kinect-style depth cameras for dense 3D modeling of indoor environments. Int.

J. Robotics Research, 31:647–663, April 2012.

[39] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-

Fai Yu, and Sai-Kit Yeung. SceneNN: A scene meshes dataset with annotations.

In International Conference on 3D Vision (3DV), volume 1, 2016.

[40] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-

combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, An-

drew Davison, et al. Kinectfusion: real-time 3d reconstruction and interaction

using a moving depth camera. In Proceedings of the 24th annual ACM sympo-

sium on User interface software and technology, pages 559–568. ACM, 2011.

BIBLIOGRAPHY 97

[41] Olaf Kähler, Victor A Prisacariu, and David W Murray. Real-time large-scale

dense 3D reconstruction with loop closure. In European Conference on Com-

puter Vision, pages 500–516. Springer, 2016.

[42] Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin Sun, Philip Torr,

and David Murray. Very high frame rate volumetric integration of depth images

on mobile devices. IEEE transactions on visualization and computer graphics,

21(11):1241–1250, 2015.

[43] Andrej Karpathy, Stephen Miller, and Li Fei-Fei. Object discovery in 3D scenes

via shape analysis. In Robotics and Automation (ICRA), 2013 IEEE Interna-

tional Conference on, pages 2088–2095. IEEE, 2013.

[44] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive grow-

ing of gans for improved quality, stability, and variation. In International Con-

ference on Learning Representations (ICLR), 2018.

[45] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface recon-

struction. In Proceedings of the fourth Eurographics symposium on Geometry

processing, volume 7, 2006.

[46] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction.

ACM Transactions on Graphics (TOG), 32(3):29, 2013.

[47] Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich,

and Andreas Kolb. Real-time 3d reconstruction in dynamic scenes using point-

based fusion. In Proc. 3DV, pages 1–8. IEEE, 2013.

[48] Byung-soo Kim, Pushmeet Kohli, and Silvio Savarese. 3d scene understanding

by voxel-crf. In Proceedings of the IEEE International Conference on Computer

Vision, pages 1425–1432, 2013.

[49] Young Min Kim, Niloy J Mitra, Dong-Ming Yan, and Leonidas Guibas. Acquir-

ing 3d indoor environments with variability and repetition. ACM Transactions

on Graphics (TOG), 31(6):138, 2012.

BIBLIOGRAPHY 98

[50] D Kinga and J Ba Adam. A method for stochastic optimization. In International

Conference on Learning Representations (ICLR), volume 5, 2015.

[51] Georg Klein and David Murray. Parallel tracking and mapping for small AR

workspaces. In Proc. ISMAR, Nara, Japan, November 2007.

[52] Matthew Klingensmith, Ivan Dryanovski, Siddhartha Srinivasa, and Jizhong

Xiao. Chisel: Real time large scale 3D reconstruction onboard a mobile device

using spatially hashed signed distance fields. In Robotics: Science and Systems,

2015.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[54] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wol-

fram Burgard. g 2 o: A general framework for graph optimization. In Proc.

ICRA, pages 3607–3613. IEEE, 2011.

[55] Chuan Li and Michael Wand. Combining markov random fields and convolu-

tional neural networks for image synthesis. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 2479–2486, 2016.

[56] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with

markovian generative adversarial networks. In European Conference on Com-

puter Vision, pages 702–716. Springer, 2016.

[57] Hao Li, Etienne Vouga, Anton Gudym, Linjie Luo, Jonathan T Barron, and

Gleb Gusev. 3d self-portraits. ACM TOG, 32(6):187, 2013.

[58] Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Nießner. Database-

assisted object retrieval for real-time 3d reconstruction. In Computer Graphics

Forum, volume 34, pages 435–446. Wiley Online Library, 2015.

[59] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common

BIBLIOGRAPHY 99

objects in context. In European Conference on Computer Vision, pages 740–

755. Springer, 2014.

[60] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-

works for semantic segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[61] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d

surface construction algorithm. In ACM siggraph computer graphics, volume 21,

pages 163–169. ACM, 1987.

[62] David G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,

60:91–110, 2004.

[63] Robert Maier, Jürgen Sturm, and Daniel Cremers. Submap-based bundle ad-

justment for 3d reconstruction from rgb-d data. In Proc. GCPR, Münster,

Germany, September 2014.

[64] Oliver Mattausch, Daniele Panozzo, Claudio Mura, Olga Sorkine-Hornung, and

Renato Pajarola. Object detection and classification from large-scale cluttered

indoor scans. In Computer Graphics Forum, volume 33, pages 11–21. Wiley

Online Library, 2014.

[65] John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J.Davison.

Scenenet rgb-d: 5m photorealistic images of synthetic indoor trajectories with

ground truth. 2016.

[66] Maxime Meilland, A Comport, Patrick Rives, and INRIA Sophia Antipolis

Méditerranée. Real-time dense visual tracking under large lighting variations.

In Proc. BMVC, volume 29, 2011.

[67] Niloy J Mitra, Leonidas J Guibas, and Mark Pauly. Partial and approximate

symmetry detection for 3d geometry. In ACM Transactions on Graphics (TOG),

volume 25, pages 560–568. ACM, 2006.

BIBLIOGRAPHY 100

[68] Richard M. Murray, S. Shankar Sastry, and Li Zexiang. A Mathematical Intro-

duction to Robotic Manipulation. CRC Press, 1994.

[69] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify approach for

cluttered indoor scene understanding. ACM Transactions on Graphics (TOG),

31(6):137, 2012.

[70] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor

segmentation and support inference from RGBD images. In ECCV, 2012.

[71] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh

optimization. In Proceedings of the 4th international conference on Computer

graphics and interactive techniques in Australasia and Southeast Asia, pages

381–389. ACM, 2006.

[72] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David

Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and

Andrew Fitzgibbon. Kinectfusion: Real-time dense surface mapping and track-

ing. In Mixed and augmented reality (ISMAR), 2011 10th IEEE international

symposium on, pages 127–136. IEEE, 2011.

[73] Duc Thanh Nguyen, Binh-Son Hua, Lap-Fai Yu, and Sai-Kit Yeung. A robust

3D-2D interactive tool for scene segmentation and annotation. arXiv preprint

arXiv:1610.05883, 2016.

[74] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3d recon-

struction at scale using voxel hashing. ACM Transactions on Graphics (TOG),

2013.

[75] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and

Alexei A Efros. Context encoders: Feature learning by inpainting. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2536–2544, 2016.

BIBLIOGRAPHY 101

[76] Mark Pauly, Niloy J Mitra, Joachim Giesen, Markus H Gross, and Leonidas J

Guibas. Example-based 3d scan completion. In Symposium on Geometry Pro-

cessing, number EPFL-CONF-149337, pages 23–32, 2005.

[77] Mark Pauly, Niloy J Mitra, Johannes Wallner, Helmut Pottmann, and

Leonidas J Guibas. Discovering structural regularity in 3d geometry. In ACM

transactions on graphics (TOG), volume 27, page 43. ACM, 2008.

[78] Krhenbühl Phillip and Vladlen Koltun. Efficient inference in fully connected

crfs with gaussian edge potentials. Adv. Neural Inf. Process. Syst, 2011.

[79] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan,

and Leonidas Guibas. Volumetric and multi-view cnns for object classification

on 3d data. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE,

2016.

[80] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. In Interna-

tional Conference on Learning Representations (ICLR), 2016.

[81] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,

and Honglak Lee. Generative adversarial text-to-image synthesis. In Proceedings

of The 33rd International Conference on Machine Learning, 2016.

[82] Scott E. Reed, Aäron van den Oord, Nal Kalchbrenner, Sergio Gómez, Ziyu

Wang, Dan Belov, and Nando de Freitas. Parallel multiscale autoregressive

density estimation. In Proceedings of The 34th International Conference on

Machine Learning (ICML), 2017.

[83] Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. Oct-

netfusion: Learning depth fusion from data. In 3D Vision (3DV), 2017 Inter-

national Conference on, pages 57–66. IEEE, 2017.

[84] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep

3d representations at high resolutions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017.

BIBLIOGRAPHY 102

[85] Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung Gwak, Daeyun Shin,

and Derek Hoiem. Completing 3d object shape from one depth image. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2484–2493, 2015.

[86] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on

Medical Image Computing and Computer-Assisted Intervention, pages 234–241.

Springer, 2015.

[87] Henry Roth and Marsette Vona. Moving volume KinectFusion. In Proc. BMVC,

2012.

[88] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3D model

acquisition. ACM TOG, 21(3):438–446, 2002.

[89] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm.

In Proc. 3DIM, pages 145–152, 2001.

[90] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.

LabelMe: a database and web-based tool for image annotation. International

journal of computer vision, 77(1-3):157–173, 2008.

[91] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixel-

cnn++: A pixelcnn implementation with discretized logistic mixture likelihood

and other modifications. In ICLR, 2017.

[92] Manolis Savva, Angel X. Chang, Pat Hanrahan, Matthew Fisher, and Matthias

Nießner. PiGraphs: Learning interaction snapshots from observations. ACM

Transactions on Graphics (TOG), 35(4), 2016.

[93] Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping Li, and Baining

Guo. An interactive approach to semantic modeling of indoor scenes with an

rgbd camera. ACM Transactions on Graphics (TOG), 31(6):136, 2012.

BIBLIOGRAPHY 103

[94] Yifei Shi, Pinxin Long, Kai Xu, Hui Huang, and Yueshan Xiong. Data-driven

contextual modeling for 3d scene understanding. Computers & Graphics, 55:55–

67, 2016.

[95] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. The

princeton shape benchmark. In Shape modeling applications, 2004. Proceedings,

pages 167–178. IEEE, 2004.

[96] N. Silberman and R. Fergus. Indoor scene segmentation using a structured light

sensor. In Proceedings of the International Conference on Computer Vision -

Workshop on 3D Representation and Recognition, 2011.

[97] Ivan Sipiran, Robert Gregor, and Tobias Schreck. Approximate symmetry de-

tection in partial 3d meshes. In Computer Graphics Forum, volume 33, pages

131–140. Wiley Online Library, 2014.

[98] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. SUN RGB-D: A RGB-

D scene understanding benchmark suite. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 567–576, 2015.

[99] Shuran Song and Jianxiong Xiao. Deep sliding shapes for amodal 3d object

detection in rgb-d images. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 808–816, 2016.

[100] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and

Thomas Funkhouser. Semantic scene completion from a single depth image.

Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017.

[101] Olga Sorkine and Daniel Cohen-Or. Least-squares meshes. In Shape Modeling

Applications, 2004. Proceedings, pages 191–199. IEEE, 2004.

[102] Pablo Speciale, Martin R Oswald, Andrea Cohen, and Marc Pollefeys. A sym-

metry prior for convex variational 3d reconstruction. In European Conference

on Computer Vision, pages 313–328. Springer, 2016.

BIBLIOGRAPHY 104

[103] Frank Steinbrucker, Christian Kerl, and Daniel Cremers. Large-scale multi-

resolution surface reconstruction from rgb-d sequences. In Proc. ICCV, Sydney,

Australia, 2013.

[104] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel

Cremers. A benchmark for the evaluation of rgb-d slam systems. In Proc. IROS,

Oct. 2012.

[105] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller.

Multi-view convolutional neural networks for 3D shape recognition. In Proc.

ICCV, 2015.

[106] Minhyuk Sung, Vladimir G Kim, Roland Angst, and Leonidas Guibas. Data-

driven structural priors for shape completion. ACM Transactions on Graphics

(TOG), 34(6):175, 2015.

[107] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating

networks: Efficient convolutional architectures for high-resolution 3d outputs.

In Proc. of the IEEE International Conf. on Computer Vision (ICCV), vol-

ume 2, page 8, 2017.

[108] Alex Teichman, Stephen Miller, and Sebastian Thrun. Unsupervised intrinsic

calibration of depth sensors via SLAM. In Robotics: Science and Systems,

volume 248, 2013.

[109] Sebastian Thrun and Ben Wegbreit. Shape from symmetry. In Tenth IEEE

International Conference on Computer Vision (ICCV’05) Volume 1, volume 2,

pages 1824–1831. IEEE, 2005.

[110] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.

Bundle adjustment, a modern synthesis. In Vision algorithms: theory and

practice, pages 298–372. Springer, 2000.

[111] Julien Valentin, Matthias Nießner, Jamie Shotton, Andrew Fitzgibbon,

Shahram Izadi, and Philip Torr. Exploiting uncertainty in regression forests

for accurate camera relocalization. In Proc. CVPR, pages 4400–4408, 2015.

BIBLIOGRAPHY 105

[112] Julien Valentin, Vibhav Vineet, Ming-Ming Cheng, David Kim, Jamie Shot-

ton, Pushmeet Kohli, Matthias Nießner, Antonio Criminisi, Shahram Izadi,

and Philip Torr. SemanticPaint: Interactive 3D labeling and learning at your

fingertips. ACM Transactions on Graphics (TOG), 34(5):154, 2015.

[113] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recur-

rent Neural Networks. In Proceedings of The 33rd International Conference on

Machine Learning, 2016.

[114] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex

Graves, and Koray Kavukcuoglu. Conditional Image Generation with PixelCNN

Decoders. In Neural Information Processing Systems (NIPS), 2016.

[115] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-

cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM

Transactions on Graphics (TOG), 36(4):72, 2017.

[116] Thibaut Weise, Thomas Wismer, Bastian Leibe, and Luc Van Gool. In-hand

scanning with online loop closure. In Proc. ICCV Workshops, pages 1630–1637,

2009.

[117] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard, and

John McDonald. Robust real-time visual odometry for dense rgb-d mapping.

In Proc. ICRA, 2013.

[118] Thomas Whelan, Michael Kaess, Maurice Fallon, Hordur Johannsson, John

Leonard, and John McDonald. Kintinuous: Spatially extended KinectFusion.

Technical report, CSAIL, MIT, 2012.

[119] Thomas Whelan, Michael Kaess, John J Leonard, and John McDonald.

Deformation-based loop closure for large scale dense rgb-d slam. In Proc. IROS,

pages 548–555. IEEE, 2013.

[120] Thomas Whelan, Stefan Leutenegger, Renato F Salas-Moreno, Ben Glocker,

and Andrew J Davison. Elasticfusion: Dense slam without a pose graph. Proc.

Robotics: Science and Systems, Rome, Italy, 2015.

BIBLIOGRAPHY 106

[121] Thomas Whelan, Stefan Leutenegger, Renato F Salas-Moreno, Ben Glocker,

and Andrew J Davison. ElasticFusion: Dense SLAM without a pose graph. In

Proc. RSS, Rome, Italy, July 2015.

[122] Chenglei Wu, Michael Zollhöfer, Matthias Nießner, Marc Stamminger, Shahram

Izadi, and Christian Theobalt. Real-time shading-based refinement for con-

sumer depth cameras. ACM Transactions on Graphics (TOG), 33(6), 2014.

[123] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou

Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1912–1920, 2015.

[124] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. Sun3d: A database of

big spaces reconstructed using sfm and object labels. In Proc. ICCV, pages

1625–1632. IEEE, 2013.

[125] Raymond A Yeh, Chen Chen, Teck-Yian Lim, Alexander G Schwing, Mark

Hasegawa-Johnson, and Minh N Do. Semantic image inpainting with deep

generative models. In CVPR, volume 2, page 4, 2017.

[126] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated con-

volutions. In ICLR, 2016.

[127] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. Octree-based fusion

for realtime 3D reconstruction. Graphical Models, 2012.

[128] Wei Zhao, Shuming Gao, and Hongwei Lin. A robust hole-filling algorithm for

triangular mesh. The Visual Computer, 23(12):987–997, 2007.

[129] Qian-Yi Zhou and Vladlen Koltun. Dense scene reconstruction with points of

interest. ACM Transactions on Graphics (TOG), 32(4):112, 2013.

[130] Qian-Yi Zhou and Vladlen Koltun. Color map optimization for 3d reconstruc-

tion with consumer depth cameras. ACM Transactions on Graphics (TOG),

33(4):155, 2014.

BIBLIOGRAPHY 107

[131] Qian-Yi Zhou, Steven Miller, and Vladlen Koltun. Elastic fragments for dense

scene reconstruction. In Computer Vision (ICCV), 2013 IEEE International

Conference on, pages 473–480. IEEE, 2013.

[132] Michael Zollhöfer, Angela Dai, Matthias Innmann, Chenglei Wu, Marc Stam-

minger, Christian Theobalt, and Matthias Nießner. Shading-based refine-

ment on volumetric signed distance functions. ACM Transactions on Graphics

(TOG), 2015.

	Abstract
	Acknowledgments
	Introduction
	Why 3D Scans?
	The Challenge of Incompleteness
	Learning to Complete 3D Scans
	Dissertation Structure

	Background
	Real-Time 3D Reconstruction
	Synthetic 3D Model Datasets
	3D Shape and Scene Completion

	Acquiring 3D Scans
	Large-Scale 3D Scanning
	Globally-Consistent Tracking
	Global Pose Alignment
	Hierarchical Optimization
	Pose Alignment as Energy Optimization

	Interactive Reconstruction
	Integration and De-integration

	Reconstruction Results
	Reconstructing a Large-Scale Dataset of 3D scans

	Discussion

	Formulating Scan Completion as a Generative Task for 3D Shapes
	A Generative Model for Predicting Coarse Completed Global Structure
	Network Architecture
	Generating Supervised Training Data

	Evaluation
	Evaluation Metrics
	Comparison to Previous Work
	Benefit of Completion for Classification
	Ablation Study
	Effect of Data Representation
	Results on Real Shapes

	Discussion

	A Generative Model for Scan Completion for Large-Scale Scenes
	Network Design
	Increasing the Receptive Field

	Decoupling Train and Test Sizes
	Generating Supervised Training Data
	Evaluation
	Evaluation Metric
	Ablation Study
	Results on Synthetic Scenes
	Results on Real Scenes

	Other Applications of ScanComplete: Semantic Segmentation
	Discussion

	Conclusions
	BundleFusion Experiment Details
	Acquiring a Large-Scale Dataset of 3D Scans
	Data Acquisition
	RGB-D Scanning
	Surface Reconstruction

	Data Annotation
	Impact of Real-world Data for 3D Semantic Understanding
	3D Object Classification
	3D Semantic Scene Segmentation

	Creating a 2D/3D Benchmark

	Bibliography

