TUTi

—Xercise 5 solution

Non-lLinearities

Sigmoid - Forward

def forward(self, x):

:param x: Inputs, of any shape.

:return out: Outputs, of the same shape as x.
:return cache: Cache, stored for backward computation, of the same shape as x.

Remark:

shape = x.shape The output of sigmoid function
out, cache = np.zeros(shape), np.zeros(shape) . .

RO R R A R R R R R A AR e R R E R R R R R R e R R R H R R R IS Stored I_n the CaChe for the
orooof # computation in backward pass.
Implement the forward pass of Sigmoid activation function

B R R T R R R I A A R T I T R R R I AR R R E T S R R R R S a AR TR Sy
out =1/ (1 + np.exp(-x))

cache = out

R AR R R T R R R A R R A S S AR R R R AR A AR R R F I SRR R SO AR RS
= END OF YOUR CODE #
R R R S T R R R R A R AR R R A AR R R S A A R R R R R SR R R R RS n AR TR R R
return out, cache

12DL: Pro

-
(]

Sigmoid — Backward

def backward(self, dout, cache):
:param dout: Upstream gradient from the computational graph, from the Loss function
and up to this layer. Has the shape of the output of forward().
:param cache: The values that were stored during forward() to the memory,
to be used during the backpropogation.
rreturn: dx: the gradient w.r.t. input X, of the same shape as X

Remark:

dx = None

HHHHHH A R R R R S R R R R R R The derlvatlve Of SlngId

il ooof # function is sigmoid * (1 - sigmoid)
Implement the backward pass of Sigmoid activation function

e e S S
dx = dout * cache * (1 - cache)
R A T T L L T T L S T T R R I e S g r e S S s n s R

END OF YOUR CODE
FHHH S R R R R R R R R
return dx

Relu - Forwara

def forward(self, x):

:param x: Inputs, of any shape.

:return outputs: Outputs, of the same shape as x.

treturn cache: Cache, stored for backward computation, of the same shape as x.
out = None

cache = None

R A S A O R R R A R R A A A A A R R A R R R R R E S R R b a7 7R 5

S TODOE #

Implement the forward pass of Relu activation function
R S A R R R A R R A A A A AR R A R R R R R R A S R R b R 7 7R 5

out = np.maximum(x, @)

cache = x
L L L L L L L R L R RS R
END OF YOUR CODE

FHEH S R R R I R R e R R
return out, cache

l2DL: Prof. Da

Relu - Backward

def backward(self, dout, cache):
:param dout: Upstream gradient from the computational graph, from the Loss function
and up to this layer. Has the shape of the output of forward().
:param cache: The values that were stored during forward() to the memory,
to be used during the backpropogation.
:return: dx: the gradient w.r.t. input X, of the same shape as X

dx = None
B B e
Sl T ODOE #
Implement the backward pass of Relu activation function
TR R R R I R R I R R R R I I R R R R R T R R R R T R R R R S T A R R RS
x = cache
dx = dout

dx[x < 8] =@
TR R R R I R R A T R R I T R R R R R T F R R A T R R R R S T A R AR RS

END OF YOUR CODE
R R R e R
return dx

l2DL: Prof. Da

Affine Layers

Affine Layer- Forward

def affine_ forward(x, w, b):
Computes the forward pass for an affine (fully-connected) layer.
The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N
examples, where each example x[1] has shape (d_1, ..., d_k). We will
reshape each input into a vector of dimension D =d 1 * ... * d k, and
then transform it to an output vector of dimension M.
Inputs:
:param x: A numpy array containing input data, of shape (M, d 1, ..., d k)
rparam w: A numpy array of weights, of shape (D, M)
:param b: A numpy array of biases, of shape (M,)
:return out: output, of shape (N, M)

‘return cache: (x, W, b) Remark: the input x, weights w,
and bias b are saved in cache,
such that the backward pass can
access them.

N, M = x.shape[@], b.shape[@]
out = np.zeros((N,M))

H

: Implement the affine forward pass. Store the result in out.
You will need to reshape the input into rows.

x_reshaped = np.reshape(x, (x.shape[@], -1))
out = x_reshaped.dot(w) + b

END OF YOUR CODE

cache = (x, w, b)
return out, cache

Affine Layer — Backward

def affine_backward(dout, cache):

Computes the backward pass for an affine layer.
Inputs:
:param dout: Upstream derivative, of shape (N, M)
:param cache: Tuple of:
- x: Input data, of shape (N, d_1, ... d_ k)
- w: Weights, of shape (D, M)
- b: A numpy array of biases, of shape (M,
:return dx: Gradient with respect to x, of shape (N, d1, ..., d k)
:return dw: Gradient with respect to w, of shape (D, M)
:return db: Gradient with respect to b, of shape (M,)

X, W, b = cache Remark
dx, dw, db = None, None, None

Make sure the dw and dx have
the same shape as w and x.

#*

QIsply: Implement the affine backward pass.

dw = (np.reshape(x, (x.shape[@], -1)).T).dot(dout)
dw = np.reshape(dw, w.shape)

db = np.sum(dout, axis=0, keepdims=False)

dx = dout.dot(w.T)
dx = np.reshape(dx, x.shape)
END OF YOUR CODE

return dx, dw, db

Questions? Piazza ©

