xXercise 8
Autoencoder

[2DL: Prof. Niessner



Data Augmentation at Beginning

* Importance

— Data augmentation is a solution towards limited training
data

— Also improve generalization ability of your model

* Two types of data augmentation:
— Offline Augmentation
— Online Augmentation

[2DL: Prof. Niessner



Data Augmentation

» Offline Augmentation:

— AS a pre-processing step to increase the size of the
dataset. This is usually done when we have a small training
dataset. In this case, the size of the augmented dataset is
fixed.

* Online Augmentation:

— Apply transformations in mini-batches and then feed it to
the model So the size of the augmented dataset that the
model actually sees can be infinitely large.

[2DL: Prof. Niessner



-Encoder

def _ init (self, hparams, input_size=28 * 28, latent_dim=20):

class Encoder(nn.Module):

super()._ _init_ ()

# set hyperparams
self.latent_dim = latent_dim
self.input_size = input_size
self.hparams = hparams
self.encoder = None

e e R L B
# TODO: Initialize your encoder! #

B

self.encoder = nn.Sequential(
nn.Linear(input_size, 500),
nn.BatchNormld(500),
nn.ReLU(),
nn.Dropout (p=0.5),
nn.Linear (500, 100),
nn.BatchNormld(100),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(100, latent_dim),
nn.BatchNormld(latent_dim),
nn.ReLU()

)

i
# END OF YOUR CODE #
B

[2DL: Prot. Niessner

Remark: This is a
typical set up for
fully-connected
layers.You can also
be creative here
and come up with
your own
architecture ©



Classifier

class Classifier(pl.LightningModule):

Remark: Here we

def _ init_(self, hparams, encoder, train_set=None, val_set=None, test_set=None):

super().__init ()
# set hyperparams
self.hparams = hparams
self.encoder = encoder
self.model = nn.Identity()
self.data = {'train': train_set,
'val': val_set,
'test': test_set}
B i

# TODO: Initialize your classifier! #
# Remember that it must have the same inputsize as the outputsize #
# of your encoder #

B i i
self.model = nn.Linear (20, 10)
B e

# END OF YOUR CODE #
i

[2DL: Prof. Niessner

show a very simple
classifier, but the
important thing to
note here is that you
have to match the
input shape of the
classifier to the
output shape of
your encoder
implemented
above.



Simple Encoder-Classifier Model

« Remark: \With the given hyperparameters, our
Encoder-Classifier model can reach an accuracy
around 70%

i
# TODO: Define your hyper parameters here! #
HHARHHRHHARHARHATHARHHTHAHHAHH A A AR HHA A TR AR AR AR AR AR AR AR A
hparams = {

"batch_size": 128,

"learning rate": le-2
}
i
# END OF YOUR CODE #
HHARHHRHHARHARHATHARHHHHHHHHHHHHAHHAHHAHHARHA AT AR AR AR AR AR AR AR A

[2DL: Prof. Niessner



Autoencoder

 Model Architecture:

— As suggested in the exercise notebook, the simplest way
S to have a symmetric architecture which ensure that
the latent information can be reconstructed properly.

» Reconstruction Loss:

— Inthis exercise, we use the mean squared error loss
between our input pixels and the output pixels. Please
think what would be the potential drawbacks of this type

of loss. ©

[2DL: Prof. Niessner



Decoder

class Decoder (nn.Module):

def _ init_(self, hparams, latent dim=20, output_size=28 * 28): °®
super().__init_ ()

# set hyperparams
self.hparams = hparams
self.decoder = None

B i
# TODO: Initialize your decoder! #
B i

self.decoder = nn.Sequential(
nn.Linear(latent_dim, 100),
nn.BatchNormld(100),
nn.Dropout (p=0.5),
nn.ReLU(),
nn.Linear (100, 500),
nn.BatchNormld(500),
nn.Dropout (p=0.5),
nn.ReLU(),
nn.Linear (500, output_size)

)

i
# END OF YOUR CODE #
i

[2DL: Prof. Niessner

Remark: As
suggested
before, we will
mirror the
architecture of
the encoder to
construct the
decoder,



Autoencoder [raining

Fi i i

# TODO: Define your hyperparameters here! #

s e e s e s L e s L s L s L4 Rel | |a rk The
hparams = {

asrning rate's Sa-3 nyperparameter
}

i a n d th e t ra | n e r

# END OF YOUR CODE #

o h e r e | S S | m | L a r t O

i o '

# TODO: Define your trainer! Don't forget the logger. # O u r p re\/ | O US

o L

ae_trainer = pl.Trainer( tra | n | n g Of th e
max_epochs=30,

gpus=1 if torch.cuda.is_available() else None, e n COd e r_ C l_a SS | f| e r

logger=ae_logger

) model.

i o
# END OF YOUR CODE #
o

[2DL: Prof. Niessner



Remnstruchon Analysis

We can see that the reconstructed digits
look similar to the original ones, but they

are more pblurry.

The reason of this are mainly two aspects.
— First, out latent dimension might be too small

Ongma Dlg\ts 7

so that we lost some useful iInformation
... — Second, the L2 reconstruction loss that we

’ use essentially converge to a mean value,
ﬂﬂ which we would lose the sharpness.

71717

Reconstructed Digits




Transfer Learning

« Now, we come to the most important part of this
exercise, which we take the pretrained encoder and
our classifier to build our final model, and trained on

only the labelled data

Untrained
Classifier

Pretrained Encoder

[2DL: Prof. Niessner

11



Transfer Learning

B
# TODO: Define your hyper parameters here! #
B
hparams = {

"batch_size": 256,

"learning rate": le-2
}
i
# END OF YOUR CODE #
e e L L A S A e e s

SR s R R R R R R s s s R e e s R e e
# TODO: Define your trainer! Don't forget the logger. #
B

trainer = pl.Trainer(
max_epochs=50,
gpus=1 if torch.cuda.is_available() else None

)

o
# END OF YOUR CODE #
e

[2DL: Prof. Niessner

Remarks: With
the example
nyperparameters
~Wwe can reach an
accuracy at
around 80%

12



Batch Normalization (Optional)

« Remarks: This is a computational graph of the forward
oass and the backward pass of the batch
normalization. It could help you better understand the
flow of computation

(N, D)
> % out
- dout
\ ; / 7
\ / /
\ \ / / /
) S / g / ’
@ ° @ Q ° ’/‘v 4 ’
(D,) /
/ /
/

(D,)
]
dg -

Source: https./kratzert.github.io/2016/02/12/understanding-the-gradient-
flow-through-the-batch-normalization-layerhtml

[2DL: Prof. Niessner
13



BatchNorm-forwara

i
# TODO: Look at the training-time forward pass implementation for batch#

# normalization. # @ Remarkg. NOte

i
sample mean = np.mean(x, axis=0)

X_minus_mean = x - sample_mean the d'ffe rence
sqg = X_minus_mean ** 2 ' '
= 1. / N * np.sum(sq, axis=0) t t
‘s,:ztvar = np.sq?i(\srl:; iqep:}){ls Oe \X/ee n ra | n | n g
ivar = 1. / sqgrtvar

X_norm = X_minus_mean * ivar O h a Se a n d tegti n g

gammax = gamma * X norm

out = gammax + beta

running var = momentum * running var + (1 - momentum) * var Ohase
running mean = momentum * running mean + (1 - momentum) * sample mean

cache = (out, x _norm, beta, gamma, X minus_mean, ivar, sqrtvar, var, eps

i
# END OF YOUR CODE #
i
elif mode == 'test':

B i
# TODO: Look at the test-time forward pass for batch normalization. #
B
X = (X - running mean) / np.sqrt(running var)

out = x * gamma + beta

B
# END OF YOUR CODE #

| ;T&#######################################################################
[2DL: Prot. Niessner

14



BatchNorm-backword

o

# TODO: Implement the backward pass for batch normalization. # @ Remarkg Utl lee

o

N, D = dout.shape

out, x norm, beta, gamma, xmu, ivar, sqrtvar, var, eps = cache the

dxnorm = dout * gamma .

S 2 Coe () © B CHG) computational
= var

dsqrtvar = -1. / (sqrtvar ** 2) * divar

dvar = 0.5 * 1. / np.sqrt(var + eps) * dsgrtvar graph O]c batCh

dsq = 1. / N * np.ones((N, D)) * dvar L ,

dxmu2 = 2 * xmu * dsq

DAL 2 normaltization

dmean = -1. * np.sum(dxl, axis=0) .

dx2 = 1. / N * np.ones((N, D)) * dmean \X/l[[ hetp YOU

dx = dx1 + dx2

dbeta = np.sum(dout, axis=0) understand the

dgamma = np.sum(dout * X norm, axis=0)

B i

; e . Pbackward pass

B i @

[2DL: Prof. Niessner
15



[C] show data download links
Ignore outliers in chart scaling

Tooltip sorting method: default v

LLLLLLLLLLLLL

,,,,,,,,,,,,,,,

[2DL: Prof. Niessner

tag: val/loss

Remarks: As can
be seen from the
tensorboard, the
model with batch
normalization
(blue curve)
results in better
performance on
both training and
validation set

16



Dropout (Optional)

Remarks: Dropout Is

a regularization

L

technique for neura

O)
<
=

> O
o on
mwj
55
X
D

c ©

some features to
zero during the
forward pass

.\

W
——.st

/A b’(‘
:eﬁ "
AR
o2 o g

N

b\

)
| 7\ G,
ave s O
R

XKD

e
NZANY,

\k.
\Q' <9 ‘Q'
¥ O
IXDRD X DR
ARG
P

(b) After applying dropout.

tandard Neural Net

S

4
~~
<
S—

[2DL: Prof. Niessner

17



Dropout-forward

if mode == 'train':
i ° |:\) e m a r l/< S ' N Ote
# TODO: Implement the training phase forward pass for inverted dropout. # '

# Store the dropout mask in the mask variable. # ,
B t h t L L t
mask = (np.random.rand(*x.shape) > p) / (1 - p) a \X/e W' nO

out = x * mask . |

HHHHARHARHA AT AR ARH AT TR AT AT AR T d rO p n e u rO n S at
# END OF YOUR CODE #

HHARHHH AR HAAHH AR A HHHAAHHHHAARRH A AR A A A AR AR A AR A AR
s P T B test time

HHARHHHHHHHH AN AR HHHAAH AR HH A AR AR AR AR AR
# TODO: Implement the test phase forward pass for inverted dropout. #
o
out = x

i
# END OF YOUR CODE #
i

[2DL: Prof. Niessner



Dropout-backward

if mode == 'train':
HHHHHHHRHARHARHARHARHRRH AR HHA TR RAATHARHARH R A ARH TR HAA TR AR ARH AR AR A
# TODO: Implement the training phase backward pass for inverted dropout.
B B 8
dx = dout * mask
B o
# END OF YOUR CODE #
HHHHHHHRHARHARHARHAHH AR AR HAA TR RAATHARHARHRHH AR TR RAA TR AR ARA AR AR

elif mode == 'test':
dx = dout

[2DL: Prof. Niessner

Remarks: Note the
difference between
training phase and
testing phase that
we dont apply
dropout at test time

19



Dropout-Training Results

TensorBoard SCALARS HPARAMS  TIME SERIE

[[] show data download links

 Remarks: As can be
s seen from the
. %” tensorboard, the
—— °'H model with dropout
Lo has slightly higher
training loss, but
L Re— o the model would

°°°°°°° : / g \ perform better on
o o the validation set
H AR HH g] S

[2DL: Prof. Niessner

n
B,
n

20



Questions? Plazza

[2DL: Prof. Niessner



