
I2DL: Prof. Dai

CNN Architectures

1

I2DL: Prof. Dai

Convolutions on RGB Images

2

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ;
w/o padding, there are
28 × 28 locations

Convolve

I2DL: Prof. Dai

Convolution Layer

3

32

32

3

3
5

5

32 × 32 × 3 image

5 × 5 × 3 filter

1

28

28

activation maps

1

Let’s apply a different filter
with different weights!

Convolve

I2DL: Prof. Dai

Convolution Layer

4

32

32

3

32 × 32 × 3 image

5
28

28

activation maps

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”

Convolve

I2DL: Prof. Dai

Convolution Layers: Dimensions

5

In
p

ut
 h

e
ig

ht
 o

f N

Input: 𝑁 × 𝑁
Filter: 𝐹 × 𝐹
Stride: 𝑆
Output: (𝑁−𝐹

𝑆
+ 1) × (

𝑁−𝐹

𝑆
+ 1)

Input width of N

𝑁 = 7, 𝐹 = 3, 𝑆 = 1:
7−3

1
+ 1 = 5

𝑁 = 7, 𝐹 = 3, 𝑆 = 2:
7−3

2
+ 1 = 3

𝑁 = 7, 𝐹 = 3, 𝑆 = 3:
7−3

3
+ 1 = 2.3333

Fractions are illegal

Filter width
of F

F
ilt

er
 h

e
ig

ht

o
f F

I2DL: Prof. Dai

Convolution Layers: Padding

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

6

Set padding to 𝑃 =
𝐹−1

2

Im
ag

e
7x

7
+

ze
ro

 p
ad

d
in

g

Types of convolutions:

• Valid convolution: using
no padding

• Same convolution:
output=input size

I2DL: Prof. Dai

CNN Learned Filters

7

I2DL: Prof. Dai

CNN Prototype

8
Slide by Karpathy

I2DL: Prof. Dai

Classic Architectures

9

I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

10
[LeCun et al. ’98] LeNet

Input: 32×32 grayscale images

This one: Labeled as class “7”

I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

• Valid convolution: size shrinks
• How many conv filters are there in the first layer?

11

I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

• At that time average pooling was used, now max
pooling is much more common

12

I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

• Again valid convolutions, how many filters?

13

I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

• Use of tanh/sigmoid activations  not common now!

14

I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC

15

I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height Number of Filters

16

60k parameters

I2DL: Prof. Dai

Deep Neural Clustering

• Today MNIST is considered an easy classification problem.
• It can be solved (almost perfectly) without supervision as a clustering

problem, where clustering is performed not in input space (a), but in the
latent space of a deep network (b,c).

17

Aljalbout, Golkov, Siddiqui, Strobel, Cremers, “Clustering with Deep Learning: Taxonomy and New Methods”, arxiv 2018.

Haeusser, Golkov, Aljalbout, Cremers, “Associative Deep Clustering: Training a Classification Network with no Labels”, GCPR 2018.

I2DL: Prof. Dai

Test Benchmarks
• ImageNet Dataset:

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

18

[Russakovsky et al., IJCV’15] “ImageNet Large Scale Visual Recognition Challenge.“

I2DL: Prof. Dai

Common Performance Metrics
• Top-1 score: check if a sample’s top class (i.e. the one

with highest probability) is the same as its target label
• Top-5 score: check if your label is in your 5 first

predictions (i.e. predictions with 5 highest
probabilities)

• → Top-5 error: percentage of test samples for which
the correct class was not in the top 5 predicted
classes

19

I2DL: Prof. Dai

AlexNet
• Cut ImageNet error down in half

20

Non-CNN

CNN

I2DL: Prof. Dai

AlexNet

21

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Dai

AlexNet

• First filter with stride 4 to reduce size significantly
• 96 filters

22

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Dai

AlexNet

• Use of same convolutions
• As with LeNet, Width, height Number of filters

23

[Krizhevsky et al. NIPS’12] AlexNet

• Use of same convolutions
• As with LeNet: Width, Height Number of Filters

I2DL: Prof. Dai

AlexNet

24

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Dai

AlexNet

• Softmax for 1000 classes
25

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Dai

AlexNet
• Similar to LeNet but much bigger (~1000 times)

• Use of ReLU instead of tanh/sigmoid

26

60M parameters

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Dai

VGGNet
• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2

27

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Dai

VGGNet

• 2 consecutive convolutional layers, each one with 64
filters

• What is the output size?

28

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Dai

VGGNet

29

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Dai

VGGNet

30

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Dai

VGGNet

• Number of filters is multiplied by 2

31

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Dai

VGGNet

32

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Dai

VGGNet
• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height Number of Filters

• Called VGG-16: 16 layers that have weights

• Large but simplicity makes it appealing

33

138M parameters

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Dai

VGGNet
• A lot of architectures

were analyzed

34

[Simonyan and Zisserman 2014]

I2DL: Prof. Dai

Skip Connections

35

I2DL: Prof. Dai

The Problem of Depth
• As we add more and more layers, training becomes

harder

• Vanishing and exploding gradients

• How can we train very deep nets?

36

I2DL: Prof. Dai

Residual Block
• Two layers

37

Input

Linear Non-linearity

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿 = 𝑓(𝑊𝐿𝑥𝐿−1 + 𝑏𝐿)𝑊𝐿𝑥𝐿−1 + 𝑏𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1)

I2DL: Prof. Dai

Residual Block
• Two layers

38

Linear Linear

Main path

Input

Skip connection

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

I2DL: Prof. Dai

Residual Block
• Two layers

39

Linear LinearInput

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1 + 𝑥𝐿−1)

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1)

I2DL: Prof. Dai

Residual Block
• Two layers

• Usually use a same convolution since we need same
dimensions

• Otherwise we need to convert the dimensions with a
matrix of learned weights or zero padding

40

+ 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

I2DL: Prof. Dai

ResNet Block

41

Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈𝐻(𝑥)

Any two
stacked layers

Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

+𝐹 𝑥 + 𝑥

Plain Net Residual Net

𝐹(𝑥)
Identity

𝑥

[He et al. CVPR’16] ResNet

I2DL: Prof. Dai

ResNet

• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout

42

ResNet-152:
60M parameters

[He et al. CVPR’16] ResNet

I2DL: Prof. Dai

ResNet
• Without ResNet, if we make the network deeper, at

some point performance starts to degrade:

43

I2DL: Prof. Dai

ResNet
• With Residual Blocks, performance gets better with

deeper network:

44

I2DL: Prof. Dai

Why do ResNets Work?

• How is this block really affecting me?

45

+
NN 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

I2DL: Prof. Dai

Why do ResNets Work?

46

+
NN

~zero ~zero

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1 + 𝑥𝐿−1)

𝑥𝐿+1 = 𝑓(𝑥𝐿−1)

I2DL: Prof. Dai

Why do ResNets Work?

• We kept the same values and added a non-linearity

47

+
NN 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑥𝐿−1)

I2DL: Prof. Dai

Why do ResNets Work?

• The identity is easy for the residual block to learn
• Guaranteed it will not hurt performance, can only

improve

48

+
NN 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

I2DL: Prof. Dai

1x1 Convolutions

49

I2DL: Prof. Dai

Recall: Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

50

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6

O
ut

p
ut

 3
x3

5 ⋅ 3 + −1 ⋅ 3 + −1 ⋅ 2 + −1 ⋅ 0 + −1 ⋅ 4 =
15 − 9 = 6

I2DL: Prof. Dai

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

51

2

Im
ag

e
5x

5

K
er

ne
l 1

x1

What is the output size?

I2DL: Prof. Dai

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

52

2

Im
ag

e
5x

5

K
er

ne
l 1

x1

−5 ∗ 2 = −10

-10

I2DL: Prof. Dai

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

53

2

Im
ag

e
5x

5

K
er

ne
l 1

x1

−1 ∗ 2 = −2

-10 6 4 -10 6

8 6 4 2 -6

2 0 6 6 10

-4 0 2 8 8

10 12 14 18 -2

I2DL: Prof. Dai

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

54

Im
ag

e
5x

5

-10 6 4 -10 6

8 6 4 2 -6

2 0 6 6 10

-4 0 2 8 8

10 12 14 18 -2

• 1x1 kernel: keeps the dimensions and scales input

I2DL: Prof. Dai

1x1 Convolution

55

• Same as having a 3 neuron fully connected layer

32

32

3

1 output

I2DL: Prof. Dai

1x1 Convolution

56

• As always we use more convolutional filters

32

32

3
5

32

32
5 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 1𝑥1𝑥3

[Li et al. 2013]

I2DL: Prof. Dai

Using 1x1 Convolutions

57

• Use it to shrink the number of channels
• Further adds a non-linearity  one can learn more

complex functions

32

32
200

32

32
32

32 Conv 1x1x200
+ ReLU

I2DL: Prof. Dai

Inception Layer

58

I2DL: Prof. Dai

Inception Layer
• Tired of choosing filter sizes?

• Use them all!

• All same convolutions

• 3x3 max pooling is with stride 1

59

I2DL: Prof. Dai

Inception Layer
• Possible size of the

output

• Not sustainable!

60

28 × 28 × 192

28 × 28 × 64 28 × 28 × 3228 × 28 × 128 28 × 28 × 192

28 × 28 × 416

I2DL: Prof. Dai

Inception Layer: Computational Cost

61

32

32
200

32

32
92

92 Conv 5x5x200
+ ReLU

Multiplications: 5x5x200

1 value of the output volume

x 32x32x92 ~ 470 million

I2DL: Prof. Dai

Inception Layer: Computational Cost

62

32

32
200

92 Conv 5x5
+ ReLU

Multiplications: 1x1x200x32x32x16 5x5x16x32x32x92 ~ 40 million

32

32
92

16 Conv 1x1
+ ReLU

32

32
16

Reduction of multiplications by 1/10

I2DL: Prof. Dai

Inception Layer

63
[Szegedy et al CVPR’15] GoogLeNet

I2DL: Prof. Dai

Inception Layer: Dimensions

64

28 × 28 × 192

28 × 28 × 64

28 × 28 × 16

28 × 28 × 3228 × 28 × 128

28 × 28 × 96 28 × 28 × 192

28 × 28 × 32

28 × 28 × 256

We do not want max pool
result to take up almost all

the output

[Szegedy et al CVPR’15] GoogLeNet

I2DL: Prof. Dai

GoogLeNet: Using the Inception Layer

65

Inception block

Extra max pool layers to
reduce dimensionality

[Szegedy et al CVPR’15] GoogLeNet

I2DL: Prof. Dai

Xception Net
• “Extreme version of Inception”: applying (modified)

Depthwise Separable Convolutions instead of normal
convolutions

• 36 conv layers, structured into several modules with
skip connections

• outperforms Inception Net V3

66

[Chollet CVPR’17] Xception

I2DL: Prof. Dai

Depth-wise separable convolutions

67

Normal convolutions act on all channels.

I2DL: Prof. Dai

Depth-wise separable convolutions

68

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

Filters are applied only at certain depths of the features.
Normal convolutions have groups set to 1, the convolutions
used in this image have groups set to 3.

I2DL: Prof. Dai

Depth-wise separable convolutions

69

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

But the depth size is always the same!

I2DL: Prof. Dai

Depth-wise separable convolutions

70

Solution:
1x1 convs!

I2DL: Prof. Dai

But why?

71

Original convolution
256 kernels of size 5x5x3

Multiplications:
256x5x5x3 x (8x8 locations) = 1.228.800

I2DL: Prof. Dai

But why?

72

Original convolution
256 kernels of size 5x5x3

Multiplications:
256x5x5x3 x (8x8 locations) = 1.228.800

Depth-wise convolution
3 kernels of size 5x5x1

Multiplications:
5x5x3 x (8x8 locations) = 4800

1x1 convolution
256 kernels of size 1x1x3

Multiplications:
256x1x1x3x (8x8 locations) = 49152

Less
computation!

I2DL: Prof. Dai

ImageNet Benchmark

28.2

25.8

16.4

11.7

7.3 6.66
5.5

3.57 2.99 2.25

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

30

ILSVRC
2010

ILSVRC
2011

AlexNet
(ILSVRC
2012)

ZF
(ILSVRC
2013)

VGG
(ILSVRC
2014)

GoogLeNet
(ILSVRC
2014)

Xception
(2016)

ResNet
(ILSVRC
2015)

Trimps-
Soushen
(ILSVRC
2016)

SENet
(ILSVRC
2017)

ImageNet Classification top-5-error (%)

73

22 Layers
36 Layers

19 Layers

8 Layers

8 Layers

Shallow

Revolution of Depth

152 Layers

I2DL: Prof. Dai

Fully Convolutional
Network

74

I2DL: Prof. Dai

“tabby
cat”

Classification Network

75

I2DL: Prof. Dai

FCN: Becoming Fully Convolutional

76

Convert fully connected layers to convolutional layers!

I2DL: Prof. Dai

FCN: Becoming Fully Convolutional

77

I2DL: Prof. Dai

FCN: Upsampling Output

78

I2DL: Prof. Dai

Semantic Segmentation (FCN)

79

[Long and Shelhamer. 15] FCN

How do we go back
to the input size?

I2DL: Prof. Dai

Types of Upsampling
• 1. Interpolation

80

?

I2DL: Prof. Dai

Types of Upsampling
• 1. Interpolation

81

Original image

Nearest neighbor interpolation Bilinear interpolation Bicubic interpolation

Image: Michael Guerzhoy

I2DL: Prof. Dai

Types of Upsampling
• 1. Interpolation

✅ Few artifacts

82

I2DL: Prof. Dai

Types of Upsampling
• 2. Transposed conv

83

[Dosovitskiy, Springenberg, Brox, “Learning to Generate Chairs with Convolutional Networks“, CVPR 2015]

+ CONVS

✅ efficient

I2DL: Prof. Dai

Types of Upsampling
• 2. Transposed convolution

 Unpooling
 Convolution filter (learned)

 Also called up-convolution
(never deconvolution)

84

Output 5x5

Input 3x3

I2DL: Prof. Dai

Refined Outputs
• If one does a cascade of unpooling + conv

operations, we get to the encoder-decoder
architecture

• Even more refined: Autoencoders with skip
connections (aka U-Net)

85

I2DL: Prof. Dai

U-Net

86

U-Net architecture: Each blue box is a multichannel feature map. Number of channels denoted at
the top of the box, dimensions at the top. White boxes are copied feature maps.

[Ronneberger, Fischer, Brox, “U-net: Convolutional networks for biomedical image segmentation”, MICCAI’15]

I2DL: Prof. Dai

U-Net: Encoder
Left side: Contraction Path (Encoder)
• Captures context of the image
• Follows typical architecture of a CNN:

– Repeated application of 2 unpadded 3x3 convolutions
– Each followed by ReLU activation
– 2x2 maxpooling operation with stride 2 for downsampling
– At each downsampling step, # of channels is doubled

 as before: Height, Width , Depth:

87

[Ronneberger, Fischer, Brox, “U-net: Convolutional networks for biomedical image segmentation”, MICCAI’15]

I2DL: Prof. Dai

U-Net: Decoder
Right Side: Expansion Path (Decoder):
• Upsampling to recover spatial locations for assigning

class labels to each pixel
– 2x2 up-convolution that halves number of input channels
– Skip Connections: outputs of up-convolutions are

concatenated with feature maps from encoder
– Followed by 2 ordinary 3x3 convs
– final layer: 1x1 conv to map 64 channels to # classes

• Height, Width: , Depth:

88

[Ronneberger, Fischer, Brox, “U-net: Convolutional networks for biomedical image segmentation”, MICCAI’15]

I2DL: Prof. Dai

Object Detection

89

I2DL: Prof. Dai

What is Object Detection?

90

I2DL: Prof. Dai

What is object detection?

91

• Goal: localize + classify objects in an
image

• Input: image
• Output: list of bounding boxes, class

labels (+ confidences)

I2DL: Prof. Dai

Challenges in Detection
• Convolutions are translationally equivariant

– Convolutions share weights: same filters slide across all
positions

– Shifting input image -> output feature maps will shift by
same amount

92https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59

I2DL: Prof. Dai

Challenges in Detection
• Convolutions are translationally equivariant
• Good for identifying “what” (e.g., classification), makes

“where” challenging

• Detection: need to detect multiple objects, likely
different sizes/places

93

I2DL: Prof. Dai

Region-Based CNNs (R-CNNs)
• Use selective search to

generate candidate regions
• Warp/rescale each region

to fixed image size, pass
through a CNN

• CNN extracts features for
predicting class + box
offsets

• Slow: runs CNN separately
for each region

94[Girshick et al. CVPR’14] R-CNN

I2DL: Prof. Dai

Fast R-CNN
• Instead of running CNN once per region, run CNN

once for the entire image
• Use region of interest (ROI) pooling to extract fixed-

size feature maps for each region

95

Regions of Interest (ROIs)
ROI-Pooling

I2DL: Prof. Dai

Region of Interest Pooling
• Used to handle variable-sized object proposals

efficiently
• Proposed regions have different sizes and aspect

ratios
• Fully-connected layers expect fixed-size inputs

 Convert each variable-sized region of interest (ROI)
from the feature map and rescale it into a fixed-sized
output using max pooling

96

I2DL: Prof. Dai

Region of Interest Pooling
• Input: 8x8 feature map
• Output size: 2x2

97
Source: https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/

I2DL: Prof. Dai

Region of Interest Pooling
• Input: 8x8 feature map
• Output size: 2x2

98
Source: https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/

I2DL: Prof. Dai

Region of Interest Pooling
• Input: 8x8 feature map
• Output size: 2x2

99
Source: https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/

I2DL: Prof. Dai

Faster R-CNN
• Use convolutions to get sliding

window effect
• Replace selective search with

a region proposal network
(RPN)
– Small CNN that slides over

feature map
– Produces region proposals

based on anchors

100

[Ren et al. NeurIPS’15] Faster R-CNN

I2DL: Prof. Dai

Anchors
• Potential bounding box candidates where an object

can be detected

101https://medium.com/thedeephub/faster-r-cnn-object-detection-5dfe77104e31

I2DL: Prof. Dai

Instance Segmentation
• Predict list of object bounding boxes, classes, and

pixel-wise masks

102

I2DL: Prof. Dai

Mask R-CNN
• Extend Faster R-CNN to also predict pixel-wise mask

for each object

103
[He et al. ICCV’17] Mask R-CNN

I2DL: Prof. Dai

R-CNNs for Detection + Segmentation

• R-CNN, Fast R-CNN, Faster R-CNN, Mask-RCNN:
two-stage detectors

• First generate region proposals, then refine boxes +
predict class labels (+ masks)

• Today: end-to-end, unified approach with
transformers

104

I2DL: Prof. Dai

Next Time: Guest Lecture
• July 14: Guest Lecture!

– In person, regular lecture slot (recording released later)

105
Phillip Isola, MIT

• Leader in vision and generative
models

• Created Pix2Pix, CycleGAN,
representation learning

• Foundations of Computer
Vision textbook

• Live Q&A – ask questions
directly!

I2DL: Prof. Dai

See you next time!

106

I2DL: Prof. Dai

References
We highly recommend to read through these papers!
• AlexNet [Krizhevsky et al. 2012]
• VGGNet [Simonyan & Zisserman 2014]
• ResNet [He et al. 2015]
• GoogLeNet [Szegedy et al. 2014]
• Xception [Chollet 2016]
• Fast R-CNN [Girshick 2015]
• U-Net [Ronneberger et al. 2015]
• EfficientNet [Tan & Le 2019]

107

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1905.11946

