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CNN Architectures
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Convolutions on RGB Images
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Convolution Layer

3
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Let’s apply a different filter
with different weights!

Convolve
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Convolution Layer

4
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Let’s apply **five** filters,
each with different weights!

Convolution “Layer”

Convolve
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Convolution Layers: Dimensions
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Convolution Layers: Padding
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Types of convolutions:

• Valid convolution: using 
no padding

• Same convolution: 
output=input size
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CNN Learned Filters

7
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CNN Prototype

8
Slide by Karpathy
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Classic Architectures

9
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LeNet
• Digit recognition: 10 classes

10
[LeCun et al. ’98] LeNet

Input: 32×32 grayscale images

This one: Labeled as class “7”
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LeNet
• Digit recognition: 10 classes

• Valid convolution: size shrinks
• How many conv filters are there in the first layer?

11
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LeNet
• Digit recognition: 10 classes

• At that time average pooling was used, now max 
pooling is much more common

12
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LeNet
• Digit recognition: 10 classes

• Again valid convolutions, how many filters?

13
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LeNet
• Digit recognition: 10 classes

• Use of tanh/sigmoid activations  not common now!

14
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LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC

15
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LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height       Number of Filters

16

60k parameters
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Deep Neural Clustering

• Today MNIST is considered an easy classification problem.
• It can be solved (almost perfectly) without supervision as a clustering 

problem, where clustering is performed not in input space (a), but in the 
latent space of a deep network (b,c).

17

Aljalbout, Golkov, Siddiqui, Strobel, Cremers, “Clustering with Deep Learning: Taxonomy and New Methods”, arxiv 2018.

Haeusser, Golkov, Aljalbout, Cremers, “Associative Deep Clustering: Training a Classification Network with no Labels”, GCPR 2018. 
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Test Benchmarks
• ImageNet Dataset:

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

18

[Russakovsky et al., IJCV’15] “ImageNet Large Scale Visual Recognition Challenge.“
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Common Performance Metrics
• Top-1 score: check if a sample’s top class (i.e. the one 

with highest probability) is the same as its target label 
• Top-5 score: check if your label is in your 5 first 

predictions (i.e. predictions with 5 highest 
probabilities)

• → Top-5 error: percentage of test samples for which 
the correct class was not in the top 5 predicted 
classes

19
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AlexNet
• Cut ImageNet error down in half

20

Non-CNN

CNN
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AlexNet

21

[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet

• First filter with stride 4 to reduce size significantly
• 96 filters

22

[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet

• Use of same convolutions
• As with LeNet, Width, height        Number of filters

23

[Krizhevsky et al. NIPS’12] AlexNet

• Use of same convolutions
• As with LeNet: Width, Height        Number of Filters



I2DL: Prof. Dai

AlexNet

24

[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet

• Softmax for 1000 classes
25

[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet
• Similar to LeNet but much bigger (~1000 times)

• Use of ReLU instead of tanh/sigmoid

26

60M parameters

[Krizhevsky et al. NIPS’12] AlexNet
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VGGNet
• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2

27

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

• 2 consecutive convolutional layers, each one with 64 
filters

• What is the output size?

28

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

29

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

30

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

• Number of filters is multiplied by 2

31

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

32

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet
• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height       Number of Filters

• Called VGG-16: 16 layers that have weights

• Large but simplicity makes it appealing

33

138M parameters

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet
• A lot of architectures 

were analyzed

34

[Simonyan and Zisserman 2014]
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Skip Connections

35
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The Problem of Depth
• As we add more and more layers, training becomes 

harder

• Vanishing and exploding gradients

• How can we train very deep nets?

36
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Residual Block
• Two layers

37

Input

Linear Non-linearity

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿 = 𝑓(𝑊𝐿𝑥𝐿−1 + 𝑏𝐿)𝑊𝐿𝑥𝐿−1 + 𝑏𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1)
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Residual Block
• Two layers

38

Linear Linear

Main path

Input

Skip connection

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿
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Residual Block
• Two layers

39

Linear LinearInput

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1 + 𝑥𝐿−1)

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1)
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Residual Block
• Two layers

• Usually use a same convolution since we need same 
dimensions

• Otherwise we need to convert the dimensions with a 
matrix of learned weights or zero padding

40

+ 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿
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ResNet Block

41

Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈𝐻(𝑥)

Any two 
stacked layers

Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

+𝐹 𝑥 + 𝑥

Plain Net Residual Net

𝐹(𝑥)
Identity

𝑥

[He et al. CVPR’16] ResNet
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ResNet

• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout

42

ResNet-152:
60M parameters

[He et al. CVPR’16] ResNet
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ResNet
• Without ResNet, if we make the network deeper, at 

some point performance starts to degrade:

43
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ResNet
• With Residual Blocks, performance gets better with 

deeper network:

44
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Why do ResNets Work?

• How is this block really affecting me?

45

+
NN 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿
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Why do ResNets Work?

46

+
NN

~zero ~zero

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1 + 𝑥𝐿−1)

𝑥𝐿+1 = 𝑓(𝑥𝐿−1)
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Why do ResNets Work?

• We kept the same values and added a non-linearity

47

+
NN 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑥𝐿−1)
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Why do ResNets Work?

• The identity is easy for the residual block to learn
• Guaranteed it will not hurt performance, can only 

improve

48

+
NN 𝑥𝐿+1𝑥𝐿−1 𝑥𝐿
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1x1 Convolutions

49
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Recall: Convolutions on Images
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1x1 Convolution
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1x1 Convolution
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1x1 Convolution
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1x1 Convolution
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• 1x1 kernel: keeps the dimensions and scales input
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1x1 Convolution

55

• Same as having a 3 neuron fully connected layer

32

32

3

1 output
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1x1 Convolution

56

• As always we use more convolutional filters

32

32

3
5

32

32
5 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 1𝑥1𝑥3

[Li et al. 2013]
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Using 1x1 Convolutions

57

• Use it to shrink the number of channels
• Further adds a non-linearity  one can learn more 

complex functions

32

32
200

32

32
32

32 Conv 1x1x200
+ ReLU
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Inception Layer

58
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Inception Layer
• Tired of choosing filter sizes?

• Use them all!

• All same convolutions

• 3x3 max pooling is with stride 1

59
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Inception Layer
• Possible size of the 

output

• Not sustainable!

60

28 × 28 × 192

28 × 28 × 64 28 × 28 × 3228 × 28 × 128 28 × 28 × 192

28 × 28 × 416
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Inception Layer: Computational Cost

61

32

32
200

32

32
92

92 Conv 5x5x200
+ ReLU

Multiplications: 5x5x200 

1 value of the output volume

x 32x32x92 ~ 470 million 
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Inception Layer: Computational Cost

62

32

32
200

92 Conv 5x5
+ ReLU

Multiplications: 1x1x200x32x32x16 5x5x16x32x32x92 ~ 40 million 

32

32
92

16 Conv 1x1
+ ReLU

32

32
16

Reduction of multiplications by 1/10
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Inception Layer

63
[Szegedy et al CVPR’15] GoogLeNet
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Inception Layer: Dimensions

64

28 × 28 × 192

28 × 28 × 64

28 × 28 × 16

28 × 28 × 3228 × 28 × 128

28 × 28 × 96 28 × 28 × 192

28 × 28 × 32

28 × 28 × 256

We do not want max pool 
result to take up almost all 

the output

[Szegedy et al CVPR’15] GoogLeNet
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GoogLeNet: Using the Inception Layer

65

Inception block

Extra max pool layers to 
reduce dimensionality

[Szegedy et al CVPR’15] GoogLeNet
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Xception Net
• “Extreme version of Inception”: applying (modified) 

Depthwise Separable Convolutions instead of normal 
convolutions

• 36 conv layers, structured into several modules with 
skip connections

• outperforms Inception Net V3

66

[Chollet CVPR’17] Xception



I2DL: Prof. Dai

Depth-wise separable convolutions

67

Normal convolutions act on all channels.
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Depth-wise separable convolutions

68

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

Filters are applied only at certain depths of the features. 
Normal convolutions have groups set to 1, the convolutions 
used in this image have groups set to 3.
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Depth-wise separable convolutions

69

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

But the depth size is always the same!
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Depth-wise separable convolutions

70

Solution: 
1x1 convs!
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But why?

71

Original convolution
256 kernels of size 5x5x3

Multiplications: 
256x5x5x3 x (8x8 locations) = 1.228.800
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But why?

72

Original convolution
256 kernels of size 5x5x3

Multiplications: 
256x5x5x3 x (8x8 locations) = 1.228.800

Depth-wise convolution
3 kernels of size 5x5x1

Multiplications: 
5x5x3 x (8x8 locations) = 4800

1x1 convolution
256 kernels of size 1x1x3

Multiplications:
256x1x1x3x (8x8 locations) = 49152

Less 
computation!
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ImageNet Benchmark
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Shallow

Revolution of Depth

152 Layers
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Fully Convolutional 
Network

74
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“tabby 
cat”

Classification Network

75
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FCN: Becoming Fully Convolutional

76

Convert fully connected layers to convolutional layers!
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FCN: Becoming Fully Convolutional

77
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FCN: Upsampling Output

78



I2DL: Prof. Dai

Semantic Segmentation (FCN)

79

[Long and Shelhamer. 15] FCN

How do we go back 
to the input size?
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Types of Upsampling
• 1. Interpolation

80

?
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Types of Upsampling
• 1. Interpolation

81

Original image

Nearest neighbor interpolation    Bilinear interpolation          Bicubic interpolation

Image: Michael Guerzhoy
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Types of Upsampling
• 1. Interpolation

✅ Few artifacts 

82
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Types of Upsampling
• 2. Transposed conv

83

[Dosovitskiy, Springenberg, Brox, “Learning to Generate Chairs with Convolutional Networks“, CVPR 2015]

+ CONVS

✅ efficient
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Types of Upsampling
• 2. Transposed convolution

 Unpooling
 Convolution filter (learned)

 Also called up-convolution
(never deconvolution)

84

Output 5x5

Input 3x3
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Refined Outputs
• If one does a cascade of unpooling + conv 

operations, we get to the encoder-decoder 
architecture

• Even more refined: Autoencoders with skip 
connections (aka U-Net)

85
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U-Net

86

U-Net architecture: Each blue box is a multichannel feature map. Number of channels denoted at 
the top of the box, dimensions at the top. White boxes are copied feature maps.

[Ronneberger, Fischer, Brox, “U-net: Convolutional networks for biomedical image segmentation”, MICCAI’15]
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U-Net: Encoder
Left side: Contraction Path (Encoder) 
• Captures context of the image
• Follows typical architecture of a CNN: 

– Repeated application of 2 unpadded 3x3 convolutions 
– Each followed by ReLU activation
– 2x2 maxpooling operation with stride 2 for downsampling
– At each downsampling step, # of channels is doubled

 as before: Height, Width   ,    Depth: 

87

[Ronneberger, Fischer, Brox, “U-net: Convolutional networks for biomedical image segmentation”, MICCAI’15]
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U-Net: Decoder
Right Side: Expansion Path (Decoder):
• Upsampling to recover spatial locations for assigning 

class labels to each pixel 
– 2x2 up-convolution that halves number of input channels
– Skip Connections: outputs of up-convolutions are 

concatenated with feature maps from encoder
– Followed by 2 ordinary 3x3 convs
– final layer: 1x1 conv to map 64 channels to # classes

• Height, Width:    , Depth:

88

[Ronneberger, Fischer, Brox, “U-net: Convolutional networks for biomedical image segmentation”, MICCAI’15]
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Object Detection

89
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What is Object Detection?

90
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What is object detection?

91

• Goal: localize + classify objects in an 
image

• Input: image
• Output: list of bounding boxes, class 

labels (+ confidences)
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Challenges in Detection
• Convolutions are translationally equivariant

– Convolutions share weights: same filters slide across all 
positions

– Shifting input image -> output feature maps will shift by 
same amount

92https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59
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Challenges in Detection
• Convolutions are translationally equivariant
• Good for identifying “what” (e.g., classification), makes 

“where” challenging

• Detection: need to detect multiple objects, likely 
different sizes/places

93
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Region-Based CNNs (R-CNNs)
• Use selective search to 

generate candidate regions
• Warp/rescale each region 

to fixed image size, pass 
through a CNN

• CNN extracts features for 
predicting class + box 
offsets

• Slow: runs CNN separately 
for each region

94[Girshick et al. CVPR’14] R-CNN
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Fast R-CNN
• Instead of running CNN once per region, run CNN 

once for the entire image
• Use region of interest (ROI) pooling to extract fixed-

size feature maps for each region

95

Regions of Interest (ROIs)
ROI-Pooling
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Region of Interest Pooling
• Used to handle variable-sized object proposals 

efficiently
• Proposed regions have different sizes and aspect 

ratios
• Fully-connected layers expect fixed-size inputs

 Convert each variable-sized region of interest (ROI) 
from the feature map and rescale it into a fixed-sized 
output using max pooling

96
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Region of Interest Pooling
• Input: 8x8 feature map
• Output size: 2x2

97
Source: https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/
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Region of Interest Pooling
• Input: 8x8 feature map
• Output size: 2x2

98
Source: https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/
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Region of Interest Pooling
• Input: 8x8 feature map
• Output size: 2x2

99
Source: https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/
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Faster R-CNN
• Use convolutions to get sliding 

window effect
• Replace selective search with 

a region proposal network 
(RPN)
– Small CNN that slides over 

feature map
– Produces region proposals 

based on anchors

100

[Ren et al. NeurIPS’15] Faster R-CNN
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Anchors
• Potential bounding box candidates where an object 

can be detected 

101https://medium.com/thedeephub/faster-r-cnn-object-detection-5dfe77104e31
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Instance Segmentation
• Predict list of object bounding boxes, classes, and 

pixel-wise masks

102
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Mask R-CNN
• Extend Faster R-CNN to also predict pixel-wise mask 

for each object

103
[He et al. ICCV’17] Mask R-CNN



I2DL: Prof. Dai

R-CNNs for Detection + Segmentation

• R-CNN, Fast R-CNN, Faster R-CNN, Mask-RCNN: 
two-stage detectors

• First generate region proposals, then refine boxes + 
predict class labels (+ masks)

• Today: end-to-end, unified approach with 
transformers 
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Next Time: Guest Lecture
• July 14: Guest Lecture!

– In person, regular lecture slot (recording released later)
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Phillip Isola, MIT

• Leader in vision and generative 
models

• Created Pix2Pix, CycleGAN, 
representation learning

• Foundations of Computer 
Vision textbook

• Live Q&A – ask questions 
directly!
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See you next time!
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References
We highly recommend to read through these papers!
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