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Object Detectors Emerge in Deep Scene CNNs
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[fig modified from: Torralba, Isola, Freeman 2024]
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[fig moditfied from: Torralba, Isola, Freeman 2024]
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Rosetta Neurons
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What does training a deep net classifier look like?

Input data Target output
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(1.e., a neural net)
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Loss: 0.65
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A “representation” is an assignment datapoints to locations in some space

.e. a labeled point cloud:

“dolphin”
| @
“fish”
® “shark”




Definitions and notation

e Arepresentationis a mappingf: X - Z,wherex € X isdataandz € £
's some transformation of the data.

e Typically we have Z = RY, i.e. the representation maps data to vector
embeddings.
Embedding
I
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Summary #1:

All layers are a representation, and so are the input data and the
output beliefs.

Representations can be understood in terms of their geometry.
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Definitions and notation

e Representational similarity is a measure d : f; Xf, = |

* |t takes two representations as input and outputs a number that is higher
if the two representations are to be considered more alike.

e Often we will measure d over a finite set of datapoints, Zi; = {fl(x(i))}?zl,
7, = {fz(x(i))}?zl, withd*: Zy X £, — |




The main question

Neural net 1's embeddings (Z;)

I

Neural net 2's embeddings (Z,)
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How similar are these two point clouds?




Regression-based metrics

Neural net 1's embeddings (Z,) #} Neural net 2's embeddings (Z,)
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Two equivalent representations under linear regression

Neural net 1's embeddings (Z;) Neural net 2's embeddings (Z,)
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Two equivalent representations under linear regression

Neural net 1's embeddings (Z;) Neural net 2's embeddings (Z,)
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Kernel-alignment metrics

KViSiOn Restrict our attention to vector embeddings
. n
@ am - f: & =R
5 - . Characterize a representation
o . . . in terms of its kernel
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Kernel-alignment metrics
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Two representations with equivalent kernels

Neural net 1's embeddings (Z;)

y X

Neural net 2's embeddings (Z,)
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Rigid transformations don’t change distances




Centered Kernel Alignment (CKA)

e Kernel alignment metrics are invariant to isometries (i.e. rotation, translation, mirror

flips, “glide reflections”)

o CKA says: Let's also be invariant to isotropic scaling

kernel similarity subtracts mean similarity

/
tr(KlHKzH) normalize by scale

V(K HK, H)tr(K,HK,H) —

[Kornblith, Norouzi, Lee, Hinton, ICML 2019]

CKAK, K,) =



Two equivalent representations under CKA

Neural net 1's embeddings (Z;) Neural net 2's embeddings (Z,)
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Nearest-neighbor kernel-alignment metric

What percent of my nearest-neighbors under representation t are also
my nearest neighbors under representation g7
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[Park et al. (2024), Klabunde et al. (2023) Oron et al. (2017)]



Metrics measure sameness up to a transformation T

{z|30 s.t. z=T(z,,0)}

Space of all points
that are a
transtormation oft z,
up to some class of

Linear, MLP

Isometry

transformations 7.

Kernel-alignment
metrics

|dentity

Representation, 7,



Which way of measuring is best?

e My opinion: kernel alignment metrics
e \Why? Because distance is the thing that matters for most downstream tasks

e Two representations that are related by an isometry are the same for most
oractical purposes

® |inear isometry —> equivalence in: retrieval, k-NN classitier, min-norm linear
regression, MLPs in the NTK regime, ...

* (We could make this definitional: a representation is a specificiation of

d: X XL - R)

[See more: “Getting Aligned on Representational Alignment,” Sucholutsky*, Muttenthaler*, et al. arXiv 2024]




Summary #2:

Representations can be compared via distance functions.

Fach distance yields different inferences you can make about
how a representation will behave, and what you can do with it.
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How different are these images”?

Fu*, Tamir*, Sundaram?®, Chai, Zhang, Dekel, Isola. DreamSim. NeurlPS 2023.



Which image is more similar to the middle”




ddle”

lar to the mi

image is more simi

Which




Which image is more similar to the midadle”




Which image is more similar to the middle”




% Alignment with Humans (2AFC)

100

O
-

70

60

50

Metric-Human Alignment

B Low-level
~ Prior learned metrics
" Base models

Fu*, Tamir*, Sundaram?®, Chai, Zhang, Dekel, Isola. DreamSim. NeurlPS 2023.



Investigating representations in the brain

How similar are these two images”?

How about these two?

ﬂ

[Kriegeskorte, Mur, Ruff, et al. 2008]



Investigating a representation via similarity analysis

Representational Dissimilarity Matrix

"

||Z(i) _ Z(j)||
/

Neural activation vector

dissimilarity

[Kriegeskorte, Mur, Ruff, et al. 2008]



Investigating a representation via similarity analysis

I'T Neuronal Units Deep net (in paricular, HMO)
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[Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo, PNAS 2014]



What's the color space in which a language (moael) sees?

Color space: a mapping from a spectral power distribution to 3 numbers

e Camera CCD: RGB color space
 Human vision: Lab color space

How did we determine this for humans?

e Ask them which colors are similar and which are different
* Find a 3D projection that best preserves distances



What's the color space in which a language (moael) sees?

* Ask an LLM which colors are similar and which are difterent
e Find a 3D projection that best preserves distances

How similar is red to orange. Output a single number between 0
and 1.

0.8



What's the color space in which a language (moael) sees?

e Ask an LLM which colors are similar and which are different

* Find a 3D projection that best preserves distances
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What's the color space in which a language (moael) sees?

e Measure distance between LLM embeddings of different color words
* Find a 3D projection that best preserves distances

CIELAB BERT, controlled context

@
& C¢ +

[Abdou et al. 2021]



Brains vs Machines

Deep nets and the human/primate brain both learn similar metric spaces.

Deep nets organize visual information similarly to how our brains do!

[Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo, PNAS 2014]



Alignment between different computer vision systems

[These slides from: Huh*, Cheung*, Wang*, Isola*, ICML 2024]



Experiment: Is alignment between vision models increasing as

vision systems become stronger?

Hypothesis 1:
There are many different ways one can represent the visual world, and each can be highly
effective.

Hypothesis 2:
All strong visual representations are alike.

[“Anna Karenina scenario,” Bansal et al. 2021]



Experiment: Is alignment between vision models increasing as

vision systems become stronger?
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Experiment: Is alignment between vision models increasing as

vision systems become stronger?
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Alignment between ditterent modalities

[These slides from: Huh*, Cheung*, Wang*, Isola*, ICML 2024]



Experiment: Is language-vision alignment increasing?

Hypothesis 1:
As language models get better and better, they will become more and more specific to
language, and start being less generally useful for vision.

Hypothesis 2:
Better language models are better vision models.

Hypothesis 2+:
The best language model is the best vision model. They converge to the same representation.
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Strong models converge in representation
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Summary #3:

Humans and deep nets both measure distances between
images in similar ways.

Different vision models, and language models, seem to be
converging in how they measure distanes.



Outline:

1. What's a representation?

2. How to measure representational similarity?

3. Which representations are similar and which are different?
4. What drives representational alignment?

5. Making representations more aligned



The Multitask Scaling Hypothesis

Hypothesis space

task gradient

\ 4

Solves task 1

Solves task
— 2

task gradient /'/4

/>

The Multitask Scaling Hypothesis

There are fewer representations that are competent

tor [V tasks than there are for M < /N tasks. As we
train more general models that solve more tasks at
once, we should expect fewer possible solutions.

“Anna Karenina principle”

@I Boaz Barak &

@aboazbaraklics

Yet another wark demonstrating "Anna Karenina" principle of deep
learning - successful deep nets seem to learn the same internal
representations, up to the "right” notian of symmetry. Supports bold
conjecture of arxiv.crg/abs/2110.06296 @rahiment @HanieSedghi
@osaukh @bneyshabur

families are alike but an wnhappy family is unl

Aoy W .y Py ;
Anna Kareningy, .

|
LY
|
J:v
< 3

‘N P =

“Contravariance Principal”

Daniel Yamins
Dayamins

13/ We thus argue for 2 "contravariance” principle: the harder the
constraint, the smaller the set of mechanisms that can solve the
constraint, and thus the more likely any two solving mechanisms
(whether biclogical or artificial) are to be similar in key ways.

Dispersion of Solution Set

Difficult Task

Constraint Strength



The Multitask Scaling Hypothesis

Hypothesis space
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Corollary: more data —> more convergence
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[Conwell, Prince, Kay, Alvarez, Konkle, Nature Communications 2024]

Conwell et al. 2024 tound that, of the
factors they tested, data diet plays the
greatest role in determining brain-
machine alignment.

Models trained on more data are more
aligned with the brain.



The Capacity Hypothesis

The Capacity Hypothesis

Bigger models are more likely to converge to a shared
representation than smaller models.
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The Simplicity Bias Hypothesis

The Simplicity Bias Hypothesis

Hypothesis space Deep networks are biased toward finding simple fits

to the data, and the bigger the model, the stronger

simplicity bias the bias. Theretore, as models get bigger, we should
l expect convergence to a smaller solution space.

<+«— «— «— simplicity bias

[Gunasekar et al. 2018, Arora et al. 2019, Valle-Perez et al. 2019., Huh et al. 2023, etc]



trained model training objective

f* = arg min fc F Eazm dataset [£ (f’ $)] + R (f)

L reqularization
function class

Task/data pressures Regularization Model size
Hypothesis space Hypothesis space
task gradient simplicity bias
\ | .
l 'I' > N .. Hypothesis
Solves task 1 ,' S . S \ T space 2
’ ~ ‘-
l ’ Functions that solve ~
the tasks d W
¥ ;
, Hypothesis \y
e R space 1 Scale up
- architectures
task gradient /;' oo <+— <+— <«— simplicity bias . \ \

“Contravariance Principal” [Cao & Yamins 2024]
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A red sphere next to
a blue cone.

| fre




World consists of a sequence of T discrete events Z = [z, ...

Sampled from unknown P(Z)

All data is mediated via observation functions obs: Z — -

Y

A red sphere next
to a blue cone.

In this world, we will model cooccurrences:

|y
|

Pcoor(xaa mb) X Z P(Xt — Lq; Xt’ — ajb)

(tvt/) : ‘t_t/ ‘ STwindow

Positives: two observations that cooccur; Negatives: two samples from marginals

I parked the car 1n a nearby street.




e (Contrastive learner, with NCE objective converges to PMI :

Peoor(Tg, X
(fx(2a), fx(23)) =~ log Proor (2 ()Pcoorb()m’?>

e An embedding in which similarly = (normalized) cooccurrence rate .

“orange”

') apple n

e For bijective, discrete obs functions, PMI over obs equals PMI over velephant”

events, which implies that different obs converge to same kernel.




Summary #4.

Scaling up task/data/model can drive convergence.

Certain contrastive learners converge to kernel = rate at which
events co-occur In nature.
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Benefits of alignment

U

f%ext

 (Can share data/supervision betwen modalities y

A red sphere next
to a blue cone.

e A common representation can serve as a bridge for
translation

e (Can scaffold new models onto existing representations " ‘
1mg text

Y

A red sphere next
to a blue cone.




Detriments of alignment

Lack of diversity in the population ot models.

Sometimes one modality has access to qualitatively different information than another,
and this information can be useful; alignment will remove this information.

There might not be a single best representation tfor all problems. (And in theory there

Isn't.)



Aligning and translating representations

Aligning:
Train a representation
that is aligned with a
supervised target

representation, up to T

Linear, MLP

lsometry
Translating:

Find the
transformation T that

Kernel-alignment
metrics

relates two

| dentity

representations

Representation, 7,
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Training to align representations up to identity transformation
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[Radford*, Kim* et al., ICML 2021]



Training to align representation up to MLP transtormation

Representation Alignment for Generation (REPA)
[Yu, Kwak, Jang, Jeong, Huang, Shin*, Xie*, ICLR 2025]
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Translating between representations

e Find an isometric transformation that e With sufficiently non-degenerate data,
relates Z; to Z,. You can translate between two
representations related by an isometry
I I with zero paired examples.
. o . |
Unique rigid transformation

Y O ( O
Q to o b mone o ;l >
O
O O

JX
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Translating between representations
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A red sphere next
<
to a blue cone.

[Schnaus, Araslanov, Cremers, arXiv 2025]

see also: Sorscher, Ganguli, Sompolinsky, PNAS 2022;
Lazaridou, Bruni, Baroni, ACL 2014



CycleGAN [Zhu*, Park*, Isola, Efros, ICCV 2017]

[Zhu™*, Park* et al. 2017], [Yi et al. 2017], [Kim et al. 2017]



CycleGAN [Zhu*, Park*, Isola, Efros, ICCV 2017]
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[Zhu™*, Park* et al. 2017], [Yi et al. 2017], [Kim et al. 2017]



CycleGAN [Zhu*, Park*, Isola, Efros, ICCV 2017]

reconstruction | .-
error O




[Jha, Zhang, Shmatikov, Morris, arXiv 2025]

Latent Representations |[vec2vec]

Method:

+ kernel matching loss

See also: [Conneau, Lample, Ranzato, Denoyer, Jégou, ICLR 2018]



Summary #5:

Many important problems involve aligning or translating
between representations.

You don't necessarily need paired data to do so.
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Shared Vision-Language Representation Space

Word representations
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[See more: “Getting Aligned on Representational Alignment,” Sucholutsky*, Muttenthaler*, et al. arXiv 2024]
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Universality and Idiosyncrasy of Perceptual Representations
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