
I2DL: Prof. Dai

RNNs and
Transformers

1

I2DL: Prof. Dai

Recurrent Neural
Networks

2

I2DL: Prof. Dai

Processing Sequences
• Recurrent neural networks process sequence data

• Input/output can be sequences

3

I2DL: Prof. Dai

RNNs are Flexible

4

Classical neural networks for image classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

I2DL: Prof. Dai

RNNs are Flexible

5

Image captioning
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

I2DL: Prof. Dai

RNNs are Flexible

6

Language recognition
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

I2DL: Prof. Dai

RNNs are Flexible

7

Machine translation
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

I2DL: Prof. Dai

RNNs are Flexible

8

Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

I2DL: Prof. Dai

RNNs are Flexible

9

Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

I2DL: Prof. Dai

Basic Structure of an RNN
• Multi-layer RNN

10

Outputs

Inputs

Hidden
states

I2DL: Prof. Dai

Basic Structure of an RNN
• Multi-layer RNN

11

Outputs

Inputs

Hidden
states

The hidden state
will have its own
internal dynamics

More expressive
model!

I2DL: Prof. Dai

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

12

Hidden
state inputPrevious

hidden
state

[Olah, https://colah.github.io ’15] Understanding LSTMs

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

I2DL: Prof. Dai

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

13

Hidden
state Parameters to be learned

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

14

Hidden
state

Note: non-linearities
ignored for now

Output
𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

15

Hidden
state

Same parameters for each
time step = generalization!

Output
𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Basic Structure of an RNN
• Unrolling RNNs

16

Same function for the hidden layers

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Basic Structure of an RNN
• Unrolling RNNs

17

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Basic Structure of an RNN
• Unrolling RNNs as feedforward nets

18

Weights are the same!

I2DL: Prof. Dai

Backprop through an RNN

19

• Unrolling RNNs as feedforward nets

Chain rule

All the way to 𝑡 = 0

Add the derivatives at different times for each weight

I2DL: Prof. Dai

Long-term Dependencies

20

I moved to Germany … so I speak German fluently.

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Long-term Dependencies

21

• Simple recurrence

• Let us forget the input

Same weights are
multiplied over and over
again

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

I2DL: Prof. Dai

Long-term Dependencies
• Simple recurrence

22

What happens to small weights?

What happens to large weights?

Vanishing gradient

Exploding gradient

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

I2DL: Prof. Dai

Long-term Dependencies

23

• Simple recurrence

• If 𝜽 admits eigendecomposition

Diagonal of this
matrix are the
eigenvalues

Matrix of
eigenvectors

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

𝜽 = 𝑸𝚲𝑸𝑇

I2DL: Prof. Dai

Long-term Dependencies

24

• Simple recurrence

• If 𝜽 admits eigendecomposition

• Orthogonal 𝜽 allows us to simplify the recurrence

𝑨𝑡 = 𝑸𝚲𝑡𝑸𝑇𝑨0

𝜽 = 𝑸𝚲𝑸𝑇

𝑨𝑡 = 𝜽𝑡𝑨0

I2DL: Prof. Dai

Long-term Dependencies
• Simple recurrence

25

What happens to eigenvalues with
magnitude less than one?

What happens to eigenvalues with
magnitude larger than one?

Vanishing gradient

Exploding gradient Gradient
clipping

𝑨𝑡 = 𝑸𝚲t𝑸𝑇𝑨0

I2DL: Prof. Dai

Long-term Dependencies
• Simple recurrence

26

Let us just make a matrix with eigenvalues = 1

Allow the cell to maintain its “state”

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

I2DL: Prof. Dai

Vanishing Gradient

27

• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Vanishing Gradient

28
[Olah, https://colah.github.io ’15] Understanding LSTMs

𝑨𝑡 = 𝜽𝑡𝑨0• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

1
?

I2DL: Prof. Dai

Long Short Term
Memory

29

[Hochreiter et al., Neural Computation’97] Long Short-Term Memory

I2DL: Prof. Dai

Long-Short Term Memory Units
• Simple RNN has tanh as non-linearity

30
[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Long-Short Term Memory Units
LSTM

31
[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Long-Short Term Memory Units
• Key ingredients
• Cell = transports the information through the unit

32
[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

Long-Short Term Memory Units
• Key ingredients
• Cell = transports the information through the unit
• Gate = remove or add information to the cell state

33

Sigmoid

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

LSTM: Step by Step

34

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

Decides when to
erase the cell state

Sigmoid = output
between 0 (forget)
and 1 (keep)

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

LSTM: Step by Step

35

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

Decides which
values will be
updated

New cell state,
output from a
tanh (−1,1)

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

LSTM: Step by Step
• Element-wise operations

36

Previous
states

Current
state

𝑪𝑡 = 𝒇𝑡 ⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

LSTM: Step by Step

37

• Output gate 𝒉𝑡 = 𝒐𝑡⊙tanh 𝑪𝑡

Decides which
values will be
outputted

Output from a
tanh (−1, 1)

[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

LSTM: Step by Step

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡 ⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙tanh 𝑪𝑡

38

I2DL: Prof. Dai

LSTM: Step by Step

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡 ⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙tanh 𝑪𝑡

39

Learned through
backpropagation

I2DL: Prof. Dai

LSTM
• Highway for the gradient to flow

40
[Olah, https://colah.github.io ’15] Understanding LSTMs

I2DL: Prof. Dai

LSTM: Dimensions
• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

41

128

128

What operation do I need to do to my input to get
a 128 vector representation?

128 128 128

When coding an
LSTM, we have to
define the size of the
hidden state

Dimensions need to
match

[Olah, https://colah.github.io ’15] Understanding LSTMs

LSTM in code

42

I2DL: Prof. Dai

Attention

43

I2DL: Prof. Dai

Attention is all you need

44

I2DL: Prof. Dai

Attention vs convolution

45

I2DL: Prof. Dai

Long-Term Dependencies

46

I moved to Germany … so I speak German fluently.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I2DL: Prof. Dai

Attention: Intuition

47

Context

I moved to Germany … so I speak German fluently

I2DL: Prof. Dai

Attention: Architecture
• A decoder processes

the information

• Decoders take as
input:
– Previous decoder

hidden state
– Previous output
– Attention

48

D D D

Context

I2DL: Prof. Dai

Transformers

49

I2DL: Prof. Dai

Deep Learning Revolution

50

Deep Learning Deep Learning 2.0

Main idea Convolution Attention

Field invented Computer vision NLP

Started NeurIPS 2012 NeurIPS 2017

Paper AlexNet Transformers

Conquered vision Around 2014-2015 Around 2020-2021

Replaced
(Augmented)

Traditional ML/CV CNNs, RNNs

I2DL: Prof. Dai

Transformers

51

Multi-Head
Attention on the
“encoder”

Fully connected
layer

Masked Multi-
Head Attention
on the “decoder”

I2DL: Prof. Dai

Multi-Head Attention

52

Intuition: Take the query Q, find the most similar
key K, and then find the value V that
corresponds to the key.

In other words, learn V, K, Q where:
V – here is a bunch of interesting things.
K – here is how we can index some things.
Q – I would like to know this interesting thing.

Loosely connected to Neural Turing Machines
(Graves et al.).

I2DL: Prof. Dai

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

Multi-Head Attention

53

Multiply queries
with keys

To train them well, divide by , “probably” because for
large values of the key’s dimension, the dot product grows
large in magnitude, pushing the softmax function into regions
where it has extremely small gradients.

Index the values
via a differentiable
operator.

Get the values

𝑑𝑘

I2DL: Prof. Dai

Multi-Head Attention

54

Q

Adapted from Y. Kilcher

I2DL: Prof. Dai

Multi-Head Attention

55

Q

K1

K2

K3
K4

K5

I2DL: Prof. Dai

Multi-Head Attention

56

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

I2DL: Prof. Dai

Multi-Head Attention

57

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Essentially, dot product between (<Q,K1>), (<Q,K2>), (<Q,K3>),
(<Q,K4>), (<Q,K5>).

I2DL: Prof. Dai

softmax
𝑄𝐾𝑇

𝑑𝑘

Multi-Head Attention

58

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values.
The larger a value is, the higher is its softmax value.
Can be interpreted as a differentiable soft indexing.

I2DL: Prof. Dai

Multi-Head Attention

59

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values.
The larger a value is, the higher is its softmax value.
Can be interpreted as a differentiable soft indexing.

softmax
𝑄𝐾𝑇

𝑑𝑘

I2DL: Prof. Dai

Multi-Head Attention

60

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Selecting the value V where
the network needs to attend..softmax

𝑄𝐾𝑇

𝑑𝑘

I2DL: Prof. Dai

Transformers – a closer look

61

K parallel
attention heads.

I2DL: Prof. Dai

Transformers – a closer look

62

Good old fully-
connected
layers.

I2DL: Prof. Dai

Transformers – a closer look

63

N layers of
attention
followed by FC

I2DL: Prof. Dai

Transformers – a closer look

64

Same as multi-head attention,
but masked. Ensures that the
predictions for position i can
depend only on the known
outputs at positions less than i.

I2DL: Prof. Dai

Transformers – a closer look

65

Multi-headed attention between
encoder and the decoder.

I2DL: Prof. Dai

Transformers – a closer look

66

Projection and prediction.

I2DL: Prof. Dai

What is missing from self-attention?
• Convolution: a different linear transformation for each

relative position. Allows you to distinguish what
information came from where.

• Self-attention: a weighted average.

67

I2DL: Prof. Dai

Transformers – a closer look

68

Uses fixed positional encoding
based on trigonometric series, in
order for the model to make use
of the order of the sequence

dimension

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin
𝑝𝑜𝑠

100002𝑖/𝑑model

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

100002𝑖/𝑑model
)

I2DL: Prof. Dai

Transformers – a final look

69

I2DL: Prof. Dai

Self-attention: complexity

70

where n is the sequence length, d is the representation dimension,
k is the convolutional kernel size, and r is the size of the neighborhood.

I2DL: Prof. Dai

Self-attention: complexity

71

where n is the sequence length, d is the representation dimension,
k is the convolutional kernel size, and r is the size of the neighborhood.

Considering that most sentences have a smaller dimension than the representation
dimension (in the paper, it is 512), self-attention is very efficient.

I2DL: Prof. Dai

Transformers – training tricks
• ADAM optimizer with proportional learning rate:

• Residual dropout
• Label smoothing
• Checkpoint averaging

72

I2DL: Prof. Dai

Transformers - results

73

I2DL: Prof. Dai

Transformers for Images
• Vision Transformers (ViTs)

74

*Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition at scale”, ICLR 2020.

I2DL: Prof. Dai

Transformers - summary
• Significantly improved SOTA in machine translation
• Launched a new deep-learning revolution in MLP
• Building block of NLP models like BERT (Google) or

GPT/ChatGPT (OpenAI)
• BERT has been heavily used in Google Search

• And eventually made its way to computer vision (and
other related fields)*

75

*Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition at scale”, ICLR 2020.

I2DL: Prof. Dai

Transfer Learning

76

I2DL: Prof. Dai

ResNet

77

ResNet-152:
60M parameters

[He et al. CVPR’16] ResNet

I2DL: Prof. Dai

Transfer Learning
• Training your own model can be difficult with limited

data and other resources
e.g.,
• It is a laborious task to manually annotate your

own training dataset
• Why not reuse already pre-trained models?

78

I2DL: Prof. Dai

Transfer Learning

79

P1 P2

Large dataset Small dataset

Distribution Distribution

Use what has been
learned for another

setting

I2DL: Prof. Dai

[Zeiler al., ECCV’14] Visualizing and Understanding Convolutional Networks

Transfer Learning for Images

80

I2DL: Prof. Dai

Transfer Learning

81

Trained on
ImageNet

Feature
extraction

[Donahue et al., ICML’14] DeCAF,
[Razavian et al., CVPRW’14] CNN Features off-the-shelf

I2DL: Prof. Dai

Transfer Learning

82

Trained on
ImageNet

Edges

Simple geometrical shapes (circles, etc)

Parts of an object (wheel, window)

Decision layers

[Donahue et al., ICML’14] DeCAF,
[Razavian et al., CVPRW’14] CNN Features off-the-shelf

I2DL: Prof. Dai

Transfer Learning

83

Trained on
ImageNet

New dataset
with C classes

TRAIN

FROZEN

[Donahue et al., ICML’14] DeCAF,
[Razavian et al., CVPRW’14] CNN Features off-the-shelf

I2DL: Prof. Dai

Transfer Learning

84

If the dataset is big
enough train more
layers with a low

learning rate

TRAIN

FROZEN

I2DL: Prof. Dai

When Transfer Learning Makes Sense

• When task T1 and T2 have the same input (e.g. an
RGB image)

• When you have more data for task T1 than for task T2

• When the low-level features for T1 could be useful to
learn T2

85

I2DL: Prof. Dai

Representation
Learning

86

I2DL: Prof. Dai

Learning Good Features
• Good features are essential for successful machine

learning

• (Supervised) deep learning depends on training data
used: input/target labels

• Change in inputs (noise, irregularities, etc.) can result
in drastically different results

87

I2DL: Prof. Dai

Representation Learning
• Allows for discovery of representations required for

various tasks

• Deep representation learning: model maps input 𝑋 to
output 𝑌

88

I2DL: Prof. Dai

Deep Representation Learning
• Intuitively, deep networks learn multiple levels of

abstraction

89

I2DL: Prof. Dai

How to Learn Good Features?
• Determine desired feature invariances

• Teach machines to distinguish between similar and
dissimilar things

90
https://amitness.com/2020/03/illustrated-simclr/

I2DL: Prof. Dai

Self-Supervised Representation Learning

• Why not just supervised learning?
– Relies heavily on labeled data
– Learns task-specific features

• Want general useful internal features that are
transferable to many tasks

91

I2DL: Prof. Dai

How to Learn Good Features?

92

[Chen et al., ICML’20] SimCLR,
https://amitness.com/2020/03/illustrated-simclr/

I2DL: Prof. Dai

Apply to Downstream Tasks

93

[Chen et al., ICML’20] SimCLR,
https://amitness.com/2020/03/illu

strated-simclr/

I2DL: Prof. Dai

DINO
• Self-supervised learning
• Trains a vision transformer (ViT) to produce

meaningful representations using self-distillation w/
no labels

94

[Caron et al., ICCV’21] Emerging Properties
in Self-Supervised Vision Transformers

I2DL: Prof. Dai

CLIP: Contrastive Language-Image Pre-training

• Connects images and text by training on massive
dataset of (image, caption) pairs scraped from the
internet

95
https://github.com/OpenAI/CLIP [Radford et al., ICML’21]

I2DL: Prof. Dai

Transfer & Representation Learning
• Transfer learning can be done via representation

learning

• Effectiveness of representation learning often
demonstrated by transfer learning performance (but
also other factors, e.g., smoothness of the manifold)

96

I2DL: Prof. Dai

See you next time!

97

