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RNNs and 
Transformers
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Recurrent Neural 
Networks
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Processing Sequences
• Recurrent neural networks process sequence data

• Input/output can be sequences
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RNNs are Flexible
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Classical neural networks for image classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNNs are Flexible
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Image captioning
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNNs are Flexible
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Language recognition
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNNs are Flexible
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Machine translation
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNNs are Flexible
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Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNNs are Flexible
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Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Basic Structure of an RNN
• Multi-layer RNN

10

Outputs

Inputs

Hidden 
states
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Basic Structure of an RNN
• Multi-layer RNN

11

Outputs

Inputs

Hidden 
states

The hidden state 
will have its own 
internal dynamics

More expressive 
model!
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Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

12

Hidden 
state inputPrevious 

hidden 
state

[Olah, https://colah.github.io ’15] Understanding LSTMs

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡
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Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

13

Hidden 
state Parameters to be learned

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs
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Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

14

Hidden 
state

Note: non-linearities 
ignored for now

Output
𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs
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Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

15

Hidden 
state

Same parameters for each 
time step = generalization!

Output
𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs
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Basic Structure of an RNN
• Unrolling RNNs

16

Same function for the hidden layers

[Olah, https://colah.github.io ’15] Understanding LSTMs
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Basic Structure of an RNN
• Unrolling RNNs

17

[Olah, https://colah.github.io ’15] Understanding LSTMs
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Basic Structure of an RNN
• Unrolling RNNs as feedforward nets
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Weights are the same!
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Backprop through an RNN
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• Unrolling RNNs as feedforward nets

Chain rule

All the way to 𝑡 = 0

Add the derivatives at different times for each weight
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Long-term Dependencies

20

I moved to Germany … so I speak German fluently.

[Olah, https://colah.github.io ’15] Understanding LSTMs
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Long-term Dependencies

21

• Simple recurrence

• Let us forget the input

Same weights are 
multiplied over and over 
again

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0
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Long-term Dependencies
• Simple recurrence
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What happens to small weights?

What happens to large weights?

Vanishing gradient

Exploding gradient

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0
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Long-term Dependencies
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• Simple recurrence

• If 𝜽 admits eigendecomposition

Diagonal of this 
matrix are the 
eigenvalues

Matrix of 
eigenvectors

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

𝜽 = 𝑸𝚲𝑸𝑇
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Long-term Dependencies
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• Simple recurrence

• If 𝜽 admits eigendecomposition

• Orthogonal 𝜽 allows us to simplify the recurrence

𝑨𝑡 = 𝑸𝚲𝑡𝑸𝑇𝑨0

𝜽 = 𝑸𝚲𝑸𝑇

𝑨𝑡 = 𝜽𝑡𝑨0
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Long-term Dependencies
• Simple recurrence
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What happens to eigenvalues with 
magnitude less than one?

What happens to eigenvalues with 
magnitude larger than one?

Vanishing gradient

Exploding gradient Gradient 
clipping

𝑨𝑡 = 𝑸𝚲t𝑸𝑇𝑨0
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Long-term Dependencies
• Simple recurrence

26

Let us just make a matrix with eigenvalues = 1

Allow the cell to maintain its “state”

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0
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Vanishing Gradient
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• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

[Olah, https://colah.github.io ’15] Understanding LSTMs
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Vanishing Gradient

28
[Olah, https://colah.github.io ’15] Understanding LSTMs

𝑨𝑡 = 𝜽𝑡𝑨0• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

1
?
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Long Short Term 
Memory

29

[Hochreiter et al., Neural Computation’97] Long Short-Term Memory
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Long-Short Term Memory Units
• Simple RNN has tanh as non-linearity

30
[Olah, https://colah.github.io ’15] Understanding LSTMs
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Long-Short Term Memory Units
LSTM

31
[Olah, https://colah.github.io ’15] Understanding LSTMs
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Long-Short Term Memory Units
• Key ingredients 
• Cell = transports the information through the unit
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[Olah, https://colah.github.io ’15] Understanding LSTMs
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Long-Short Term Memory Units
• Key ingredients 
• Cell = transports the information through the unit
• Gate = remove or add information to the cell state

33

Sigmoid

[Olah, https://colah.github.io ’15] Understanding LSTMs
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LSTM: Step by Step

34

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

Decides when to 
erase the cell state

Sigmoid = output 
between 0 (forget) 
and 1 (keep)

[Olah, https://colah.github.io ’15] Understanding LSTMs



I2DL: Prof. Dai

LSTM: Step by Step
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• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

Decides which 
values will be 
updated

New cell state, 
output from a 
tanh (−1,1)

[Olah, https://colah.github.io ’15] Understanding LSTMs
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LSTM: Step by Step
• Element-wise operations

36

Previous 
states

Current 
state

𝑪𝑡 = 𝒇𝑡 ⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

[Olah, https://colah.github.io ’15] Understanding LSTMs
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LSTM: Step by Step

37

• Output gate 𝒉𝑡 = 𝒐𝑡⊙tanh 𝑪𝑡

Decides which 
values will be 
outputted

Output from a 
tanh (−1, 1)

[Olah, https://colah.github.io ’15] Understanding LSTMs
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LSTM: Step by Step

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡 ⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙tanh 𝑪𝑡

38
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LSTM: Step by Step

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡 ⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙tanh 𝑪𝑡

39

Learned through 
backpropagation
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LSTM
• Highway for the gradient to flow

40
[Olah, https://colah.github.io ’15] Understanding LSTMs
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LSTM: Dimensions
• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

41

128

128

What operation do I need to do to my input to get 
a 128 vector representation?

128 128 128

When coding an 
LSTM, we have to 
define the size of the 
hidden state

Dimensions need to 
match

[Olah, https://colah.github.io ’15] Understanding LSTMs



LSTM in code 

42
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Attention

43



I2DL: Prof. Dai

Attention is all you need

44
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Attention vs convolution

45
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Long-Term Dependencies

46

I moved to Germany … so I speak German fluently.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Attention: Intuition

47

Context

I moved to Germany … so I speak German fluently
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Attention: Architecture
• A decoder processes 

the information

• Decoders take as 
input:
– Previous decoder 

hidden state
– Previous output
– Attention

48

D D D

Context
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Transformers

49
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Deep Learning Revolution

50

Deep Learning Deep Learning 2.0

Main idea Convolution Attention

Field invented Computer vision NLP

Started NeurIPS 2012 NeurIPS 2017

Paper AlexNet Transformers

Conquered vision Around 2014-2015 Around 2020-2021

Replaced
(Augmented)

Traditional ML/CV CNNs, RNNs
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Transformers

51

Multi-Head 
Attention on the 
“encoder”

Fully connected 
layer

Masked Multi-
Head Attention 
on the “decoder”
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Multi-Head Attention

52

Intuition: Take the query Q, find the most similar 
key K, and then find the value V that 
corresponds to the key.

In other words, learn V, K, Q where:
V – here is a bunch of interesting things.
K – here is how we can index some things.
Q – I would like to know this interesting thing.

Loosely connected to Neural Turing Machines 
(Graves et al.).
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Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

Multi-Head Attention

53

Multiply queries 
with keys

To train them well, divide by             , “probably” because for 
large values of the key’s dimension, the dot product grows 
large in magnitude, pushing the softmax function into regions 
where it has extremely small gradients. 

Index the values 
via a differentiable 
operator.

Get the values

𝑑𝑘
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Multi-Head Attention

54

Q

Adapted from Y. Kilcher
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Multi-Head Attention

55

Q

K1

K2

K3
K4

K5
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Multi-Head Attention

56

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5
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Multi-Head Attention

57

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Essentially, dot product between (<Q,K1>), (<Q,K2>), (<Q,K3>), 
(<Q,K4>), (<Q,K5>). 
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softmax
𝑄𝐾𝑇

𝑑𝑘

Multi-Head Attention

58

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values. 
The larger a value is, the higher is its softmax value. 
Can be interpreted as a differentiable soft indexing.
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Multi-Head Attention

59

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values. 
The larger a value is, the higher is its softmax value. 
Can be interpreted as a differentiable soft indexing.

softmax
𝑄𝐾𝑇

𝑑𝑘
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Multi-Head Attention

60

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Selecting the value V where 
the network needs to attend..softmax

𝑄𝐾𝑇

𝑑𝑘
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Transformers – a closer look

61

K parallel 
attention heads. 
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Transformers – a closer look

62

Good old fully-
connected 
layers.



I2DL: Prof. Dai

Transformers – a closer look

63

N layers of 
attention 
followed by FC
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Transformers – a closer look

64

Same as multi-head attention, 
but masked. Ensures that the 
predictions for position i can 
depend only on the known 
outputs at positions less than i.
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Transformers – a closer look

65

Multi-headed attention between 
encoder and the decoder.
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Transformers – a closer look

66

Projection and prediction.
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What is missing from self-attention?
• Convolution: a different linear transformation for each 

relative position. Allows you to distinguish what 
information came from where.

• Self-attention: a weighted average.

67
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Transformers – a closer look

68

Uses fixed positional encoding 
based on trigonometric series, in 
order for the model to make use 
of the order of the sequence

dimension

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin
𝑝𝑜𝑠

100002𝑖/𝑑model

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

100002𝑖/𝑑model
)
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Transformers – a final look

69
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Self-attention: complexity

70

where n is the sequence length, d is the representation dimension, 
k is the convolutional kernel size, and r is the size of the neighborhood.
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Self-attention: complexity

71

where n is the sequence length, d is the representation dimension, 
k is the convolutional kernel size, and r is the size of the neighborhood.

Considering that most sentences have a smaller dimension than the representation
dimension (in the paper, it is 512), self-attention is very efficient.



I2DL: Prof. Dai

Transformers – training tricks
• ADAM optimizer with proportional learning rate:

• Residual dropout
• Label smoothing
• Checkpoint averaging

72
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Transformers - results

73
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Transformers for Images
• Vision Transformers (ViTs)

74

*Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition at scale”, ICLR 2020.
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Transformers - summary
• Significantly improved SOTA in machine translation
• Launched a new deep-learning revolution in MLP
• Building block of NLP models like BERT (Google) or 

GPT/ChatGPT (OpenAI)
• BERT has been heavily used in Google Search

• And eventually made its way to computer vision (and 
other related fields)*

75

*Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition at scale”, ICLR 2020.
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Transfer Learning

76
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ResNet

77

ResNet-152:
60M parameters

[He et al. CVPR’16] ResNet
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Transfer Learning
• Training your own model can be difficult with limited 

data and other resources
e.g.,
• It is a laborious task to manually annotate your 

own training dataset
• Why not reuse already pre-trained models?

78
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Transfer Learning

79

P1 P2

Large dataset Small dataset

Distribution Distribution

Use what has been 
learned for another 

setting
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[Zeiler al., ECCV’14] Visualizing and Understanding Convolutional Networks

Transfer Learning for Images

80
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Transfer Learning

81

Trained on 
ImageNet

Feature 
extraction

[Donahue et al., ICML’14] DeCAF, 
[Razavian et al., CVPRW’14] CNN Features off-the-shelf 
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Transfer Learning

82

Trained on 
ImageNet

Edges

Simple geometrical shapes (circles, etc)

Parts of an object (wheel, window)

Decision layers

[Donahue et al., ICML’14] DeCAF, 
[Razavian et al., CVPRW’14] CNN Features off-the-shelf 
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Transfer Learning

83

Trained on 
ImageNet

New dataset 
with C classes

TRAIN

FROZEN

[Donahue et al., ICML’14] DeCAF, 
[Razavian et al., CVPRW’14] CNN Features off-the-shelf 
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Transfer Learning

84

If the dataset is big 
enough train more 
layers with a low 

learning rate

TRAIN

FROZEN
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When Transfer Learning Makes Sense

• When task T1 and T2 have the same input (e.g. an 
RGB image)

• When you have more data for task T1 than for task T2

• When the low-level features for T1 could be useful to 
learn T2

85
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Representation 
Learning

86
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Learning Good Features
• Good features are essential for successful machine 

learning

• (Supervised) deep learning depends on training data 
used: input/target labels

• Change in inputs (noise, irregularities, etc.) can result 
in drastically different results

87
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Representation Learning
• Allows for discovery of representations required for 

various tasks

• Deep representation learning: model maps input 𝑋 to 
output 𝑌

88
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Deep Representation Learning
• Intuitively, deep networks learn multiple levels of 

abstraction

89
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How to Learn Good Features?
• Determine desired feature invariances

• Teach machines to distinguish between similar and 
dissimilar things

90
https://amitness.com/2020/03/illustrated-simclr/
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Self-Supervised Representation Learning

• Why not just supervised learning?
– Relies heavily on labeled data
– Learns task-specific features

• Want general useful internal features that are 
transferable to many tasks

91
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How to Learn Good Features?

92

[Chen et al., ICML’20] SimCLR, 
https://amitness.com/2020/03/illustrated-simclr/
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Apply to Downstream Tasks

93

[Chen et al., ICML’20] SimCLR, 
https://amitness.com/2020/03/illu

strated-simclr/
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DINO
• Self-supervised learning 
• Trains a vision transformer (ViT) to produce 

meaningful representations using self-distillation w/ 
no labels 

94

[Caron et al., ICCV’21] Emerging Properties 
in Self-Supervised Vision Transformers
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CLIP: Contrastive Language-Image Pre-training

• Connects images and text by training on massive 
dataset of (image, caption) pairs scraped from the 
internet

95
https://github.com/OpenAI/CLIP [Radford et al., ICML’21]
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Transfer & Representation Learning
• Transfer learning can be done via representation 

learning

• Effectiveness of representation learning often 
demonstrated by transfer learning performance (but 
also other factors, e.g., smoothness of the manifold)

96
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See you next time!

97


