RNINSs and
Transformers

TUTi

Recurrent Neural
Networks

Processing Sequences

« Recurrent neural networks process sequence data

* [nput/output can be seguences

RNNSs are Flexible

one to one

Classical neural networks for image classification

Source: http//karpathyv.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

one to many

Image captioning

Source: http//karpathyv.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

many to one

Language recognition

Source: http//karpathyv.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

many to many

Machine translation

Source: http//karpathyv.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

many to many

Event classification

Source: http//karpathyv.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNSs are Flexible

one to one one to many many to one many to many many to many

Event classification

Source: http//karpathyv.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Basic Structure of an RNN

« Multi-layer RNN

| Outputs
t ¢ ¢ & ¢ % £
¢ 3 & 4§ 4 3 |
******* Hidden
A S S e e states
¢+ & 4 ¢ % 3
INputs

12DL: Prof. Dal

Basic Structure of an RNN

« Multi-layer RNN

Outputs
0 T S TR M
The hiddenstate |+ = &+ = = =
will have its own B T T T T |
nternal dynamics | == e e Hidden
states

N
- -
-
N
-
_’
-

|

More expressive
model

— - e e e

INputs

Basic Structure of an RNN

o \X/e want to have notion of 'time" or 'sequence’

b

T A =041+ Oyx,
Hidden L, A _] / ‘
state Previous nput
nidden
state

[Olah, https.//colah.github.io 15] Understanding LSTMs

Basic Structure of an RNN

o \X/e want to have notion of 'time" or 'sequence’

b

T At — OCAt_l + Bxxt

Hidden L A _]

state Qg Parameters to be learned

[Olah, https.//colah.github.io 15] Understanding LSTMs

Basic Structure of an RNN

o \X/e want to have notion of 'time" or 'sequence’

Output @

T At — BCAt—l + Hxxt
Hidden L _]
state A h, = 0pA;
Note: non-linearities
ignored for now

[Olah, https.//colah.github.io 15] Understanding LSTMs

Basic Structure of an RNN

o \X/e want to have notion of 'time" or 'sequence’

Output @
T A; =t—1 t
L N)

Same parameters for each
time step = generalization!

[Olah, https.//colah.github.io 15] Understanding LSTMs

Basic Structure of an RNN

« Unrolling RNNs Same function for the hidden layers

C'}D ©» O

>

SRS S S A
i o S

[Olah, https.//colah.github.io 15] Understanding LSTMs

Basic Structure of an RNN

« Unrolling RNNs

)
:
b

[Olah, https.//colah.github.io 15] Understanding LSTMs

Basic Structure of an RNN

« Unrolling RNINs as feedforward nets

l2DL: Prof Dai

Backprop through an RNN

« Unrolling RNNs as feedforward nets

‘ Chain rule ‘

Allthewaytot =20

Add the derivatives at different times for each welight

2D Prof. Dal 19

Long-term Dependencies

b @ €
1 Ch%l

I
A > — —>

Ll @g s

| moved to Germany . so | speak German fluently

[Olah, https.//colah.github.io 15] Understanding LSTMs

Long-term Dependencies

« Simplerecurrence A, =0,A4,_1 + 0,.x;

« Letusforgettheinput A, =014, L>

h)

!

/ A
Same welgnts are (ID

multiplied over and over
again

Long-term Dependencies

» Simple recurrence A, = 0.,tA,

What happens to small welgnts?
Vanishing gradient

What happens to large weignts?
—xploding gradient

Long-term Dependencies

» Simple recurrence A, = 0,4,

h)
o !
e [@ admits eigendecomposition A

A

Matrix of Diagonal of this
elgenvectors matrix are the
elgenvalues

Long-term Dependencies

« Simple recurrence A, = 04,

e If 8 admits eigendecomposition L»

(b

]

A
0 = QAQ” (:_[D

« Orthogonal 8 allows us to simplify the recurrence

A, = QAtQTAo

Long-term Dependencies

« Simple recurrence Ay = QA'Q' A4,

What happens to eigenvalues with
magnitude less than one”

Vanishing gradient

What happens to eigenvalues with
magnitude larger than one?

-xploding gradient ~_ Gradient
clipping

Long-term Dependencies

« Simplerecurrence A4, =0 A,

|

Let us Just make a matrix with eigenvalues - 1

Allow the cell to maintain its ‘state’

Vanishing Gradient

« 1 Fromtheweights A, =0 A,

e 2 From the activation functions (tanh) —
@ ®)
t t t
d N (N ([™
— s —> —>
A A

\| _/ J \| J

&)) &

[Olah, https//colah.githubio 15] Understanding LSTMs

Vanishing Gradient

¢ 1 Fromthe weights 4 =ﬁf/10
1

e 2 From the activation functions (tanh) 7

€ ®) ®
~ T\ ~ +\ ~ T\
A —> —> A md
\| / / \| J/
&) ® &

[Olah, https.//colah githubio '15] Understanding LSTMs

l2DL: Prof Dai

TUTi

L.ong Short Term
Memory

[Hochreiter et al., Neural Computation'gy] Long Short-Term Memory

Long-Short Term Memory Units

o Simple RNN_nas tanh as non-linearity

D, ®
1 1 |

~ N J

J
\
J

[Olah, https.//colah.github.io 151 Understanding LSTMs

Long-Short Term Memory Units

LSTM
& ® ©
a T\ i D A T\
> o—o——1— >
A iﬁi A
\l J_,ﬁr?) /_>\| =

&)) &)

[Olah, https.//colah.github.io 151 Understanding LSTMs

Long-Short Term Memory Units

« Key ingredients
o Cell -transports the information through the unit

Ci—1 Ct

[Olah, https.//colah.github.io 151 Understanding LSTMs

Long-Short Term Memory Units

« Key ingredients

o Cell -transports the information through the unit
o« (Gate -remove or add information to the cell state

T

9]

Sigmoid

I [Olah, https.//colah.github.io 15] Understanding LSTMs

LSTM: Step by Step

« Forgetgate fi =sigm(@yrx; + Oprhi_q + by)

Decides wnen to
crase the cell state

Sigmold = output
petween 0 (forget)
a1 and 1 (keep)

fi

Tt

[Olah, https.//colah.github.io '15] Understanding LSTMs

LSTM: Step by Step
« Inputgate iy = sigm(0,;x; + Opihs—1 + b;)

Decides whnich
values will be
updated

New cell state,
output from a
tanh (—1,1)

[Olah, https.//colah.github.io '15] Understanding LSTMs

LSTM: Step by Step

e Element-wise operations

Previous current
states state

[Olah, https.//colah.github.io 15] Understanding LSTMs

STM: Step by Step

« Output gate h; = 0;® tanh(C;)

Decides which
values will be
outputted

Output from a
tanh (—1,1)

[Olah, https.//colah.github.io '15] Understanding LSTMs

LSTM: Step by Step

~orget gate fe = sigm(Byx; + Opphy_y + by)

nput gate i, = sigm(0,;x; + Oy;hi_1 + b;)
Output gate oy = sigm(B,ox; + 03,1 + b,)

Cellupdate g¢ = tanh(Oy4x; + Op h,_; + by)
C@u Ct — ft @Ct_l +it®gt
OUTDUT ht — OtQ tanh(Ct)

LSTM: Step by Step

-orget gate] | + @_1 +

'Nnput gate 1+

Output gate 4+

Cell update 1+

Cell

Output h, = 0,0 tanh(C,) _earned through

packpropagation

LSTM

« Highway for the gradient to flow

[Olah, https.//colah.github.io 15] Understanding LSTMs

LSTM: Dimensions

128 123 128
« Cellupdate g = tanh(Oygxt + Opshe_q + by)

When coding an
LSTM, we have to
128 define the size of the

Nnidden state
(%

iy
By g | [tanh Dimensions need to

128 Match

Tt | e Whatoperation do I needto do to my input to get
a 128 vector representation?
[Olah, https.//colah.github.io 15] Understanding LSTMs

LSTM In code

def lstm_step forward(x, prev_h, prev_c, Wx, wh, b): def lstm step backward(dnext h, dnext c, cache):
Forward pass for a single timestep of an LSTM. Backward pass for a single timestep of an LSTM.
The input data has dimension D, the hidden state has dimension H, and we use Inputs:
a minibatch size of N. - dnext_h: Gradients of next hidden state, of shape (N, H)
. - dnext_c: Gradients of next cell state, of shape (N, H)
Inputs: - cache: Values from the forward pass

- x: Input data, of shape (N, D)

- prev_h: Previous hidden state, of shape (N, H)
- prev_c: previous cell state, of shape (N, H)

- Wx: Input-to-hidden weights, of shape (D, 4H)
- Wh: Hidden-to-hidden weights, of shape (H, 4H)
- b: Biases, of shape (4H,)

Returns a tuple of:

- dx: Gradient of input data, of shape (N, D)

- dprev_h: Gradient of previous hidden state, of shape (N, H)
- dprev_c: Gradient of previous cell state, of shape (N, H)

- dwx: Gradient of input-to-hidden weights, of shape (D, 4H)
- dwh: Gradient of hidden-to-hidden weights, of shape (H, 4H)
- db: Gradient of biases, of shape (4H,)

dx, dh, dc, dwx, dwh, db = None, None, None, None, None, None

Returns a tuple of:

- next_h: Next hidden state, of shape (N, H)

- next c: Next cell state, of shape (N, H)

- cache: Tuple of values needed for backward pass.

next h, next c, cache = None, None, None i, f, o, g9, a, ai, af, ao, ag, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h = cache
N, H = prev_h.shape # backprop into step 5

1 - do = np.tanh(next_c) * dnext_h

a = np.dot(x, Wx) + np.dot(prev_h, Wh) + b dnext_c += o * (1 - np.tanh{next_c) ** 2) * dnext_h
2 # backprop into 4

ai = al:, :H] df = prev_c * dnext_c

af = al:, H:2*H] dprev_c = f * dnext_c

ao = al:, 2*H:3*H] di = g * dnext_c

ag = al:, 3*H:] dg = 1 * dnext_c

#3 # backprop into 3

i = sigmoid(ai) dai = sigmoid(ai) * (1 - sigmoid(ai)) * di

f = sigmoid(af) daf = sigmoid(af) * (1 - sigmoid(af)) * df

0 = sigmoid(ao) dao = sigmoid(ao) * (1 - sigmoid(ao)) * do

g = np.tanh(ag) dag = (1 - np.tanh(ag) ** 2) * dg

4 . .. # backprop into 2

next_ ¢ = f * prev.c +i*g da = np.hstack((dai, daf, dao, dag))

#5

backprop into 1

db = np.sum(da, axis = @)
dprev_h = np.dot(Wwh, da.T).T
dwh = np.dot(prev_h.T, da)
dx = np.dot(da, Wx.T)

dwWx = np.dot(x.T, da)

next_h = o * np.tanh(next_c)
cache =i, f, o, g, a, ai, af, ao, ag, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h

return next_h, next_c, cache|

return dx, dprev_h, dprev_c, dwx, dwh, db

Attention

Attention is all you neec

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com mnoam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | Fukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Attention vs convolution

Convolution Global attention
0000 0000 00 00 :ﬂ....
oodéiTi‘oo 000/00\00
Fully Connected layer L ocal attention

g

Long-Term Dependencies

h O @6%@
1T 1 | |
A —» —» A » A — A BH— A

& - © © ©

L g

| moved to Germany . so | speak German fluently.

Source: https://colah.github.io/posts/2015-08-Understanding-L STMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Attention: Intuition

? e ©® ¢

1 t+1

Context

04t A+1 Oét+1 t+1

> —> —

N e S G ol

| moved to Germany . so | speak German fluently

Attention: Architecture

the information

e A decoder processes @ @ @
f f
o D

D - D
o« Decoders take as Context
| - Q
INput: . t,t+1 Cor1 el
— Previous decoder - .
hidden state ArH— A— A
— Previous output
— Attention

Transformers

Deep Learning Revolution

_ Deep Learning Deep Learning 2.0

Main idea Convolution Attention

Field invented Computer vision NLP

Started NeurlPS 2012 NeurlPS 2017
Paper AlexNet Transformers
Conqguered vision Around 2014-2015 Around 2020-2021
Reptaces Traditional ML/CV CNNs, RNNs
(Augmented)

12DL: Prof. Dal

Fully connected
layer

Multi-Head
Attention on the
‘encoder’

Transtormers

Output
Probabilities

Add & Norm

Feed
Forward

A Multi-Head
Feed Attention
Forward 7 7 N
—
Nix Add & Norm)
(2338 Nom) Moswed Masked Multi-
Multi-Head Multi-Head H d Att J[
L | Attention Attention ea e M1 O N
1 n
-\)\ / on the "decoder
POS|t|0lnaI o @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Multl-Head Attention

L,t Intuition: Take the query Q, find the most similar
'r:ear key K, and then find the value V that
——— corresponds to the key.
£ ' | In other words, learn V., K. Q where
SeRloc oL Rt JJ& n V- hereisabunch of interesting things
Attention . ‘ ‘
38 38 _ K - here Is how we can index some things.

:;j:;a -2 = Q - 'would like to know this interesting thing.
Linear Linear Linear

Loosely connected to Neural Turing Machines
v K Q (Graves et al)

Multl-Head Attention

Index the values Multiply queries
via a differentiable with keys
operator,

/ Get the values
\ QKT /

Attention(Q, K, V) = softmax \/d_
k

To train them well, divide by +/dg |, "probably’ because for
large values of the key's dimension, the dot product grows

large In magnitude, pushing the softmax function into regions
where it has extremely small gradients.

Multl-Head Attention

S~

Adapted from Y. Kilcher

Multl-Head Attention

K1
K2
K5
K
3 Q

2D Prof. Dal

Multl-Head Attention

K1 Values
V1
- V2
K5 V3
K \/
K Q vz

2D Prof. Dal

Multl-Head Attention

K1 Values
V1
Ko V2
K5 V3
K \/
K Q vz

QKT Essentially, dot product between (<Q K1>), (<Q K2>), (<Q K3>),
(<Q Kg>), (<Q K&5>),

12DL: Prof. Dal

Multl-Head Attention

K1 Values
V1
Ve Ve
K5 V3
K \V
K3 Q v;‘

QKT s simply iInducing a distribution over the values.
The larger a value is, the higher is its softmax value.
v dy] Canbe interpreted as a differentiable soft indexing.

softmax

2DL: Prof. Dai

Multl-Head Attention

K1 Values
V1
Ko \2
K5 V3
K \/
K3 Q v;‘

T
QK s simply iInducing a distribution over the values.

\/d_ The larger a value is, the higher is its softmax value.
R k/ Canbe interpreted as a differentiable soft indexing.

2Dl Prof. Dal

softmax

Multl-Head Attention

.
V1
Kg L]
K5 V3
K
K Q éz

QKT Selecting the value V where
\/d_ the network needs to attend..
k

softmax

2D Prof. Dal

Transtormers - a closer look

Output
Probabilities

Linear

K parallel

-
attention heads. —
Forward
I
I Add & Norm |<_:
f_> Ad d & N orm —{((Add & Norm) o
| . Feecld Attention N
. orwart 7 7 x
Multi-Head S e
A \ N — Add & Norm _J=,
'-'l_,ﬂ] M lk d
tte nt l On Multi-Head Mul?i?Heead
‘ Attention Attention
A J) 1 7 1 7
\ J/ \. —)
\. Positional o) Positi
Encoding 5% Encodi
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Transtormers - a closer look

Output
Probabilities

Good old fully-

connected ==

Forward

layers. e

| —LAdd & Nom) Multi-Head
Feed Attention
~>| Add & Norm Fomard 5)|~
. S Add & Norm _J=,
< | ~~lAdd & Norm] askod
Feed Multi-Head Mul?i?Heead
Forward o w2 I e e
] J —)
‘ . woitional

Attention Attention

o) & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Transtormers - a closer look

Output
Probabilities

N layers of
attention

Linear

followed by FC
Feed
Forward
Al |) (Add & Norm I:
~—>| Add & Norm |}) Mult-Head
T Feed Attention
Feed Forward)
Forward ()
Nx | —(TAdd & Nom) —
A lasked
Multi-Head Multi-Head
Attention Attention
At At 4
Nx | —[Add & Norm)) =
- Paositional A Positional
Multi-Head Encoding 4 € Encoding
Attention Input Output
Embedding Embedding
At 2 f f
] Inputs Outputs
k J (shifted right)

Transtormers - a closer look

Output
Probabilities

Same as multi-nead attention,
out masked. Ensures that the

oredictions for position I can -
depend only on the known “{d

Add & Norm

outputs at positions less than |, [(~E=ED | || v
Feed Attention
Forward 7 7 Nx
— e
Add & Norm _J=,
¥ Nx | —(TAdd & Nom) ——
Masked Atenton "tonton
- At At 4
Multi-Head — S =7
f Positional Positional
Attention Encoding (1§ @<V Encocing
Input Output
& f } Embedding Embedding
t f !
Inputs Outputs

(shifted right)

Transtormers - a closer look

Output
Probabilities

‘ :
Multi-headed attention between ==

Forward

encoder and the decoder v
—LAdd & Nom) ‘ MUTt-Head
Feed Attention

Forward) Nx
(Add&Nom J« i

r—i'l Add & Norm | Masked

Multi-Head Multi-Head

Attention Attention

- LN — L -
Multi-Head \ J |
Aﬁe I'Tt IO n Positional &) Positional

Encoding 5% Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Transtormers - a closer look

Output
Probabilities

Linear

Projection and prediction. =

Forward

I Add & Norm |<_:

) Mult-Head
Feed Attention

OUJ[DUJ[Jﬁ‘“’ e Nx

PI’ObablhtleS Mo | —~(addE Nom) Masked

Multi-Head Multi-Head

1 Attention Attention

it 4 At 4

S ﬁ \——— J —)

O max Positional o) & Positional
Encoding Encoding

Input Output

Embedding Embedding

7y Inputs Outputs

(shifted right)

What Is missing from self-attention”

o« Convolution a different linear transtormation for each

relative position. Allows you to distinguish what
information came from where.

« Self-attention: a weighted average.

Convolution Self-Attention

S R

Transtormers - a closer look

Output
Probabilities

Uses fixed positional encoding
pbased on trigonometric series, In
order for the model to make use

Linear

Feed
of the order of the sequence Forvard
—=
—{addglom) Mult-Head
Feed Attention
Forward 7 7 Nx
Positional V| O | | e
Multi-Head ‘ Multi-Head
H fmpfﬁf\ [}) Attention
EnCOdlng Tt J N
\ J \ —)
pos %004 O e
PE = Sll’l Input Output
(pos,2i) 100002i/dmodel Emberdmg Emberding
pOS Inputs Outputs
PE(pOS,2i+1) = COS(lOOOOZi/dmodel) (shifted right)

Transtformers — a final look

Output
Probabilities

Linear

Add & Norm
Feed
Forward
(CAdd & Norm IT:
(L Add & Norm Mult-Head
Feed Attention
Forward T 7 Nx
| S—
Nix Add & Norm
~—>{_Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 2 At 2
— J . ——)
Positional o @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Self-attention: complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) O(1) O(logr(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

where n is the sequence length, d is the representation dimension,
Kk Is the convolutional kernel size, and r Is the size of the neighborhood.

Self-attention: complexity

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) O(1) O(logr(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

where n is the sequence length, d is the representation dimension,
Kk Is the convolutional kernel size, and r Is the size of the neighborhood.

Considering that most sentences have a smaller dimension than the representation
dimension (in the paper, it is 512), self-attention Is very efficient.

Transtormers — training tricks

« ADAM optimizer with proportional learning rate:

0 1.5)

lrate = d_2:° . min(step_num ™~ 2 step_num - warmup_steps”

model

* Residual dropout
* [abel smoothing
« (Checkpoint averaging

Transtormers - results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
oce EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0 - 1020
GNMT + RL [31] 246 39.92 2.3-101° 1.4.1020
ConvS2S [8] 2516 40.46 9.6-10'® 1.5-1020
MOoE [26] 26.03 40.56 2.0-10" 1.2-10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1020
GNMT + RL Ensemble [31] 2630 41.16 1.8-1020 1.1-102%
ConvS2S Ensemble [8] 2636 41.29 7.7-10%% 1.2.10%
Transformer (base model) 27.3 38.1 3.3.1018

Transformer (big) 28.4 41.0 2.3-10°

Transformers for Images

e Vision Transformers (ViTs)

Vision Transformer (ViT)

MLP \
Head
Transformer Encoder

[clos] mbeddin Lmear Pr()]ectlon of Flattened Patches
NE . I I
g I I m Sl s

"Dosovitskiy et al. "An image is worth 16x16 words: Transformers for image recognition at scale’, ICLR 2020.

orof, Da 74

Transformers - summary

o Significantly improved SOTA In machine translation
« Launched a new deep-learning revolution in MLP

« Building block of NLP models like BERT (Google) or
GPT/ChatGRPT (OpenAl)

« BERT has been heavily used in Google Search

« And eventually made its way to computer vision (and
other related fields)’

"Dosovitskiy et al. "An image is worth 16x16 words: Transformers for image recognition at scale’, ICLR 2020.
|

TUTi

Transfer Learning

ResNet

x7 conv, 64, f2
paoal, /2

3
§

3x3 conv, 64
3x3 conv, 64

3x3 cony, 64
3x3 conv, 64
3x3 conv, 128, /2
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
%3 conw, 256
3x3 conv, 256
33 conv, 256

]
~
w
H
3
L]
4
2]

3x3 conv, 512
avg poal

34-layer residual
image

3x3 conv, 256, /2

Ea)
w0 w w w o=
L I e "l P
~ ~N ~ ~ -
= = = = Ln
£ & =

=3 a =

o = o

2| |2 2 2 0
& Ll o o
o

3x3 conv, 512
3x3 conw, 512

ResNet-152:
O0OM parameters

[He et al. CVPR'16] ResNet

- 77

2D Prof. Da

Transfer Learning

« Training your own model can be difficult with limited
data and other resources

ed.

* [tis alaborious task to manually annotate your
own training dataset

e Why not reuse already pre-trained models?

l2DL: Prof Dai

Transfer Learning
Distribution Distribution

_arge dataset Small dataset

L Use what has been —l
learned for another
setting

79

Transfer Learning for Images

Low-level | Middle-level Top-level
feature feature feature

[Zeiler al,, ECCV'14] Visualizing and Understanding Convolutional Networks
12DL: Prof. Dal

Trainedon [ransfer Learning

ImageNet

£ss & 2
b

g
2
&

Feature
extraction

[Donahue et al., ICML"14] DeCAF,
[Razavian et al., CVPRW14] CNN Features off-the-shelf

2D Prof. Dal 31

I

Trained on
ImageNet

2D Prof. Dal

—eww —— Decision layers

J \

—
——

= Edges

Transfer Learning

= Parts of an opject (wheel, window)

- Simple geometrical shapes (circles, etc)

[Donahue et al., ICML"14] DeCAF,
[Razavian et al., CVPRW14] CNN Features off-the-shelf

Trainedon [ransfer Learning

ImageNet

TRAIN _ New dataset

with C classes

~ —RO/EN

— [Donahue et al., ICML"14] DeCAF,
[Razavian et al., CVPRW14] CNN Features off-the-shelf

l2DL: Prof Dai 83

ST
LA

Transfer Learning

f the dataset is big
enough train more
layers with a low
learning rate

2D Prof. Dal

TRAIN

-RO/EN -

S

When Transfer Learning Makes Sense

« \Whentask T1and T2 have the same input (e.g. an
RGB image)

« When you have more data for task T1than for task T2

o« \When the low-level features for 11 could be useful to
learn 12

TUTi

Representation
_earning

earning Good Features

e (GOOd features are essential for successful macnine
learning

e (Supervised) deep learning depends on training data
used: iInput/target labels

« Change ininputs (noise, Irregularities, etc) can result
N drastically different results

Representation Learning

« Allows for discovery of representations required for
various tasks

« Deep representation learning: model maps input X to
output' Y

Deep Representation Learning

o [ntuitively, deep networks learn multiple levels of
abstraction

= _,|tow-Level| |Mid-Level| JHigh-Level Trainable
Feature Feature Feature Classifier
4 A LN

12DL: Prof. Dal Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

How to Learn Good Features?

e Determine desired feature invariances

e [each machines to distinguish between similar and

dissimilar things
Match the correct animal

nttps.//amitness.com/2020/03/illustrated-simclr/

Self-Supervised Representation Learning

« \Why not Just supervised learning?
— Relies heavily on labeled data
— [Learns task-specific features

o \Want general useful internal features that are
fransferable to many tasks

How to Learn Good Features?

Representation

Data
Augmentation

Original
Image

Maximize
similarity

Zj

h;

Encoder Dense Relu Dense -

Encoder [TTH—~pense Relu Dense > T 1] g
hj

Xj
Transformed Base Encoder Projection Head
Images f(.) al(.)
Downstream
tasks

(Chen et al., ICML'20l SIMCLR,
nttps.//amitness.com/2020/03/illustrated-simclr/

Apply to Downstream Tasks

Usage on downstream tasks

Representation
o ‘ H hj \
E 1 Encoder [T

Encoder

Base Encoder

f(.)

[Chen et al., ICML'20] SICLR,

https.//amitness.com/2020/03/illu
classification, detection, ... strated-simclr/

DINO

o Self-supervised learning

e [rains a vision transformer (VIT) to produce
meaningful representations using self-distillation w/

no labels ; o

student gg; —

° oteacher T eteacher + (1 = T) . estudent

[Caron et al., ICCV'21] Emerging Properties
in Self-Supervised Vision Transformers
oV

CLIP: Contrastive Language-Image Pre-training

« Connectsimages and text by training on massive
dataset of (image, caption) pairs scraped from the
Nnternet

(1) Contrastive pre-training (2) Create dataset classifier from label text

}

v

'
o

https.//github.com/OpenAl/CLIP [Radford et al., ICML 21]
2DL: Prof. Dal

Transfer & Representation Learning

« T[ransfer learning can be done via representation
learning

o Effectiveness of representation learning often
demonstrated by transfer learning performance (but
also other factors, eg., smoothness of the manifold)

TUTi

See you next timel

