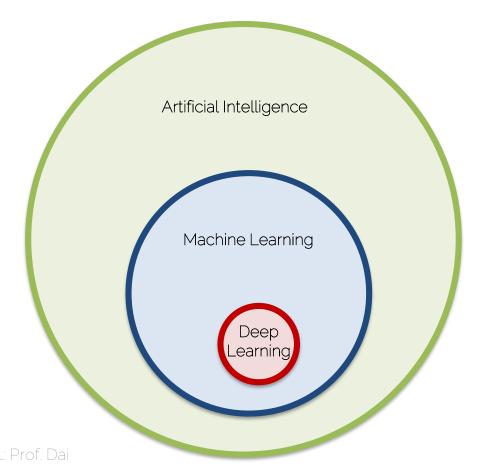


Machine Learning Basics

I2DL: Prof. Dai

Al vs ML vs DL



A Simple Task: Image Classification

2DL: Prof. Dai

2DL: Prof. Dai

Occlusions

Background clutter

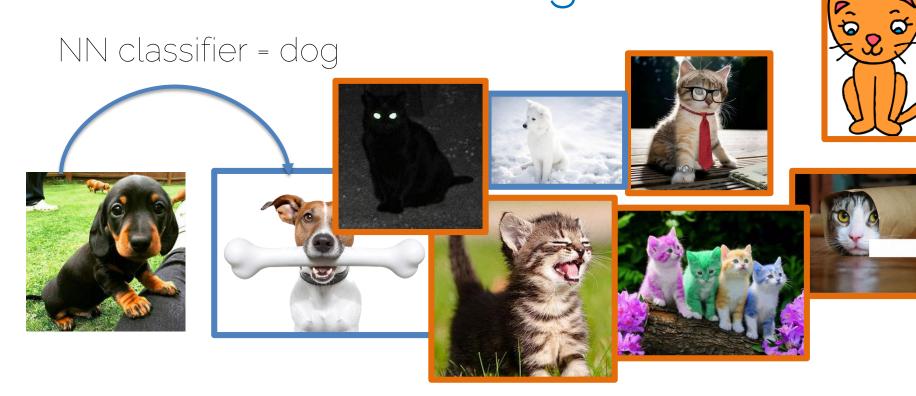
I2DL: Prof. Dai

Google	cat						ļ	a 🏮	٩			Sign in
	All	Images	Videos	News	Shopping	More	S	ettings	Tools			SafeSearch *
Cute	No. Con	And k	Kittens		Clipart		Drawi	ng		Cute Baby	White C	Cats And Kittens
			Y				R	Clark C				
Pos	Se					llumin	ation			Appe	earance	

Pose

Representation

A Simple Classifier

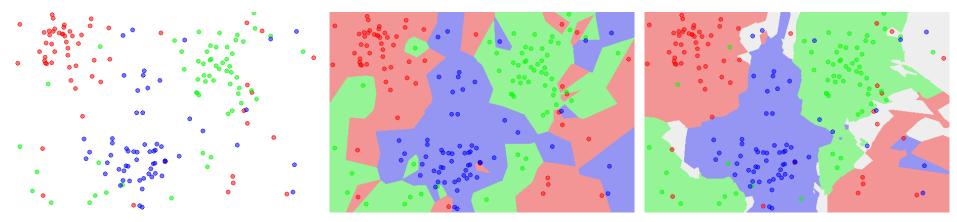


k-NN classifier = cat

The Data

NN Classifier

5NN Classifier



How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?

What are we actually learning?

I2DL: Prof. Da

Source: https://commons.wikimedia.org/wiki/File:Data3classes.png

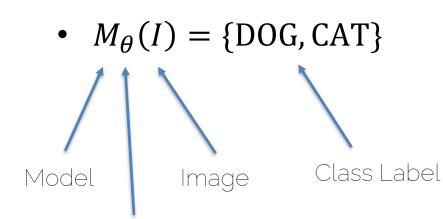
- Hyperparameters \leftarrow L1 distance : |x c|L2 distance : $||x - c||_2$ No. of Neighbors: k
- These parameters are problem dependent.

• How do we choose these hyperparameters?

Machine Learning for Classification

• How can we learn to perform image classification?

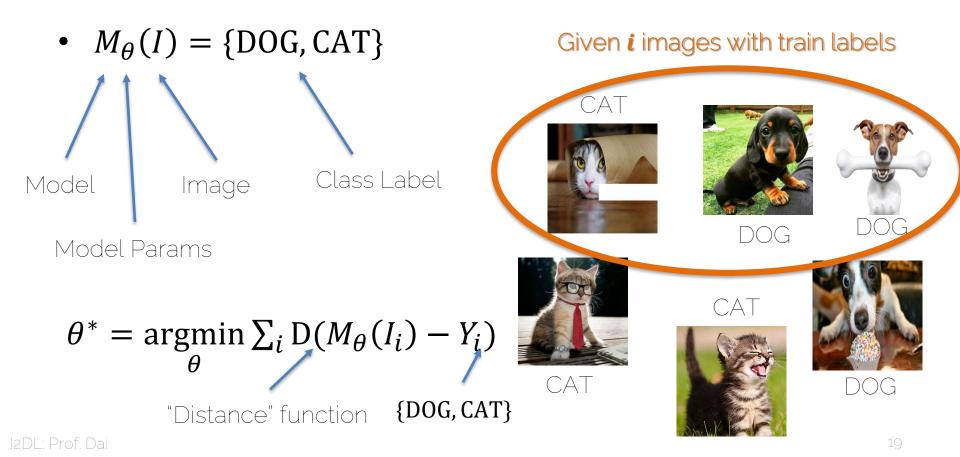




Model Params

CAT

DOG



Basic Recipe for Machine Learning

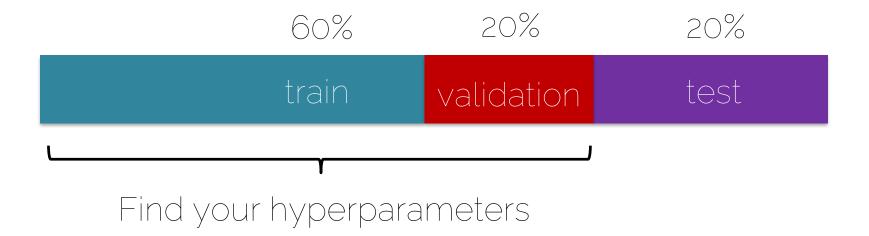
• Split your data



Other splits are also possible (e.g., 80%/10%/10%)

Basic Recipe for Machine Learning

• Split your data



Other splits are also possible (e.g., 80%/10%/10%)

Basic Recipe for Machine Learning

• Split your data

• How can we learn to perform image classification?



Unsupervised learning

Supervised learning

• Labels or target classes

Unsupervised learning

Supervised learning

CAT

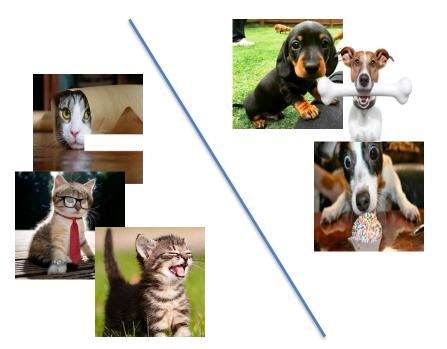
DOG

Unsupervised learning

- No label or target class
- Find out properties of the structure of the data
- Clustering (k-means, PCA, etc.)

Supervised learning

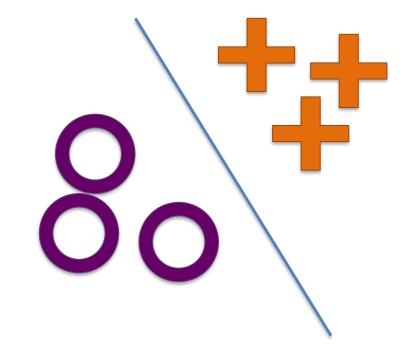
Unsupervised learning



Supervised learning

DOG

Unsupervised learning



Supervised learning

DOG

Unsupervised learning

Supervised learning

Reinforcement learning

Unsupervised learning

Supervised learning

Reinforcement learning

Unsupervised learning

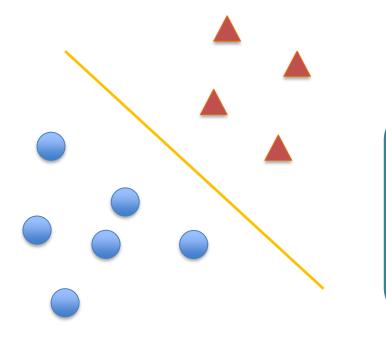
Supervised learning

Reinforcement learning



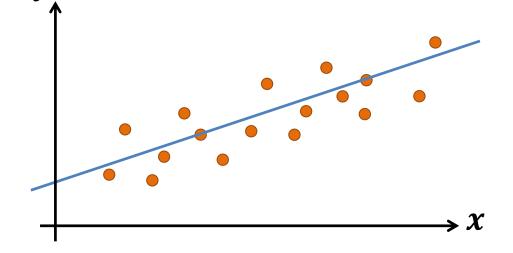
Linear Decision Boundaries

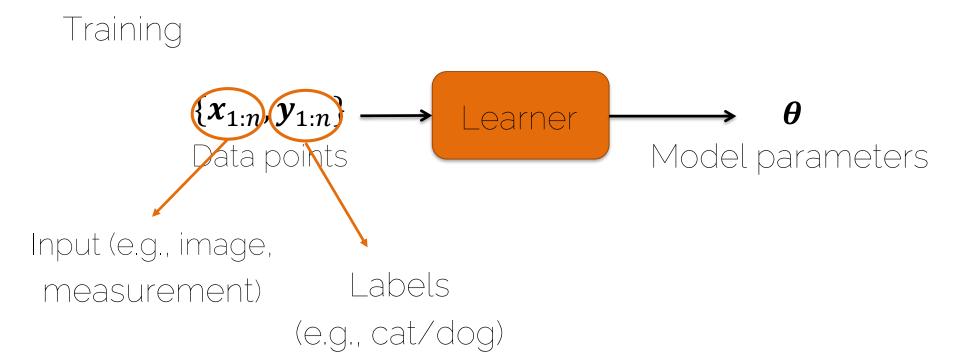
Let's start with a simple linear model!

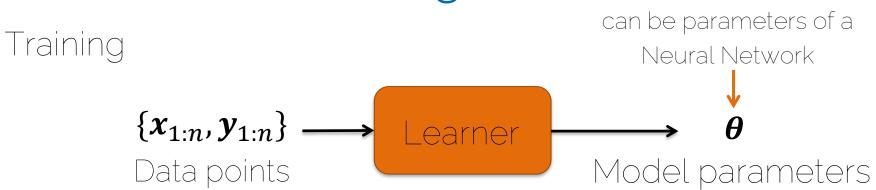


What are the pros and cons for using linear decision boundaries?

- Supervised learning
- Find a linear model that explains a target y given inputs x



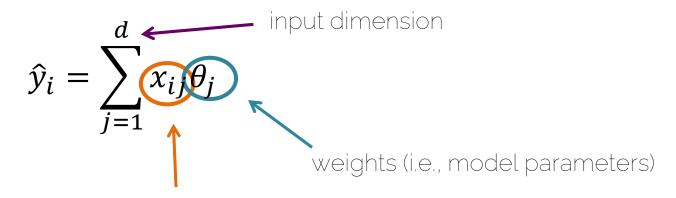




$$x_{n+1}, \theta \longrightarrow \text{Predictor} \longrightarrow \hat{y}_{n+1}$$

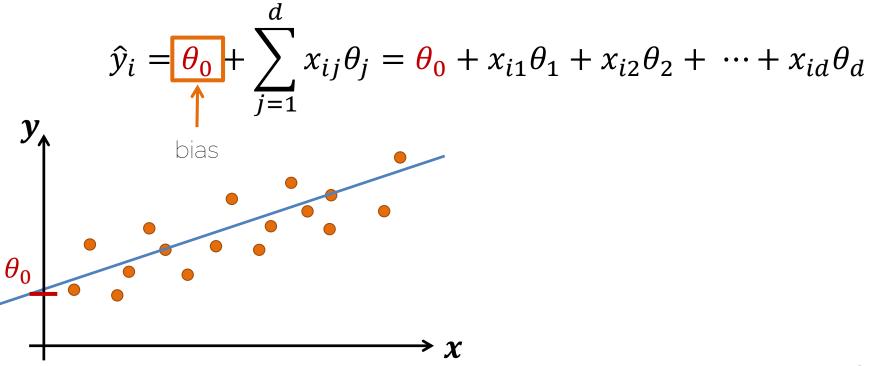
Estimation

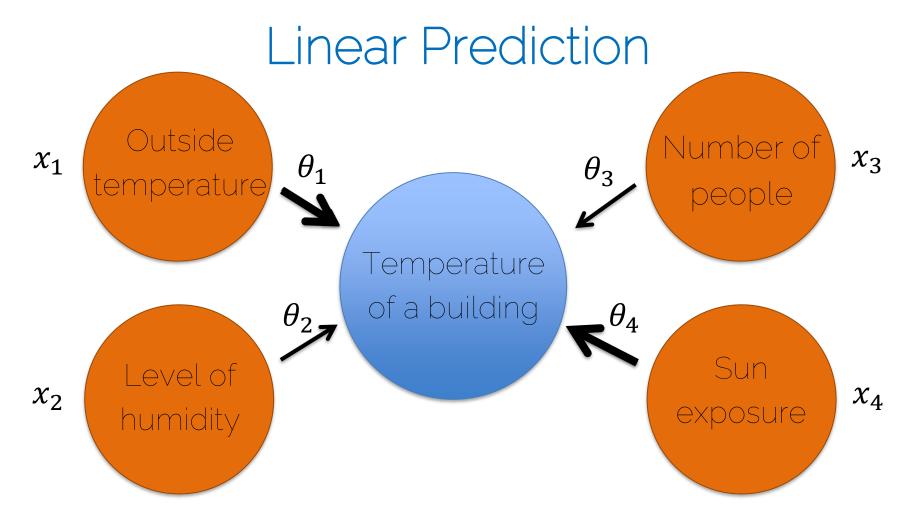
• A linear model is expressed in the form



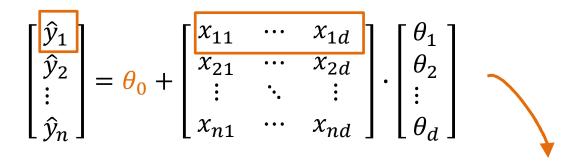
Input data, features

• A linear model is expressed in the form



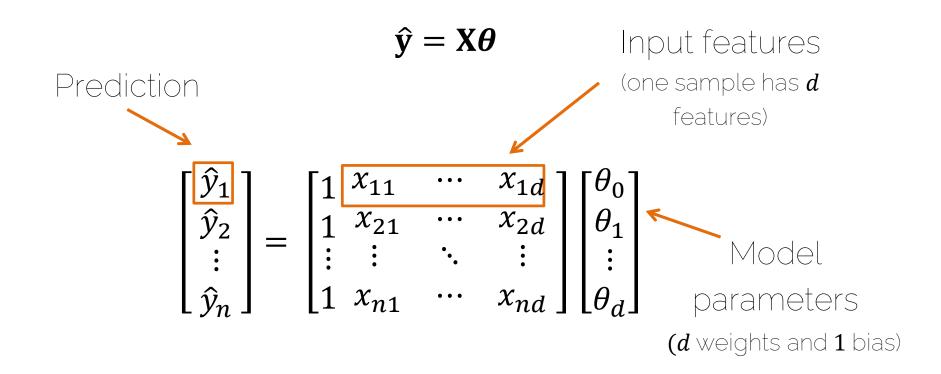


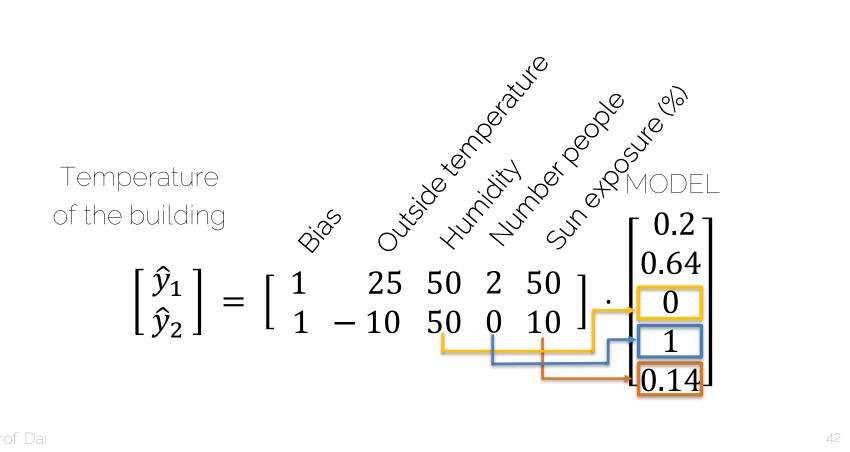
2DL: Prof. Dai

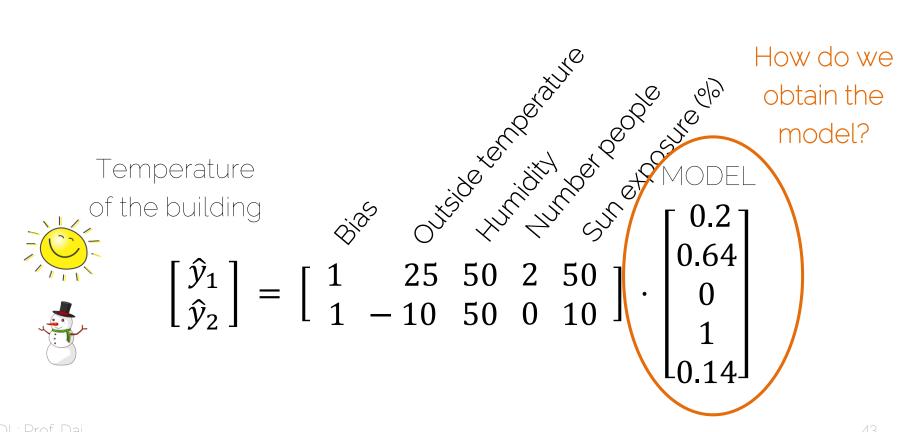


$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}$$

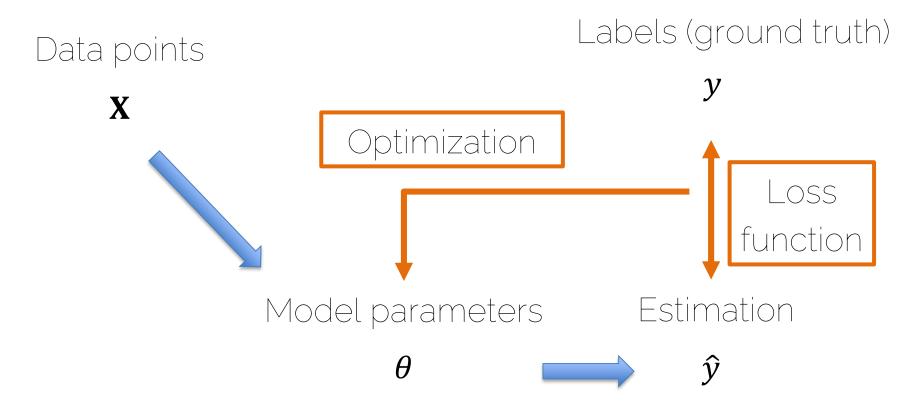
 $\Rightarrow \hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$







How to Obtain the Model?

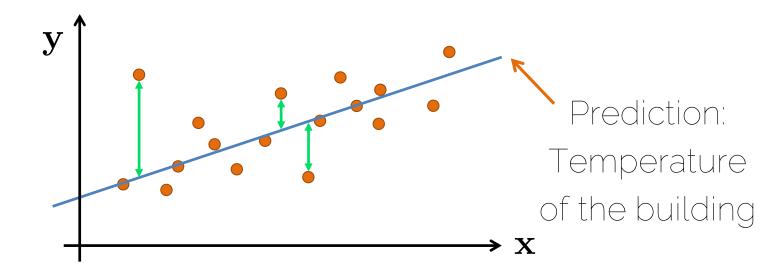


How to Obtain the Model?

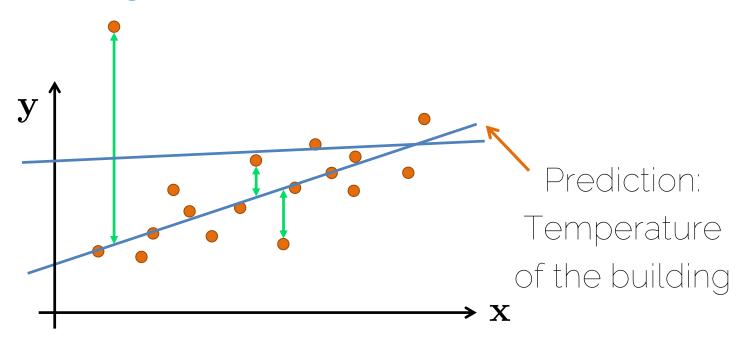
• Loss function: measures how good my estimation is (how good my model is) and tells the optimization method how to make it better.

• Optimization: changes the model in order to improve the loss function (i.e., to improve my estimation).

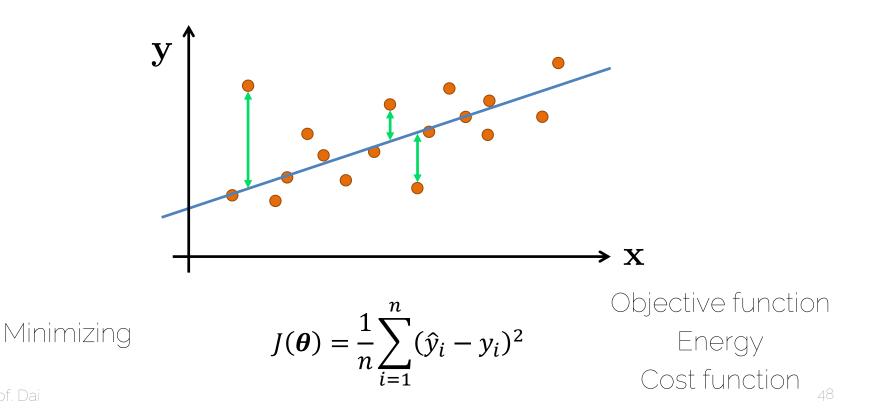
Linear Regression: Loss Function



Linear Regression: Loss Function



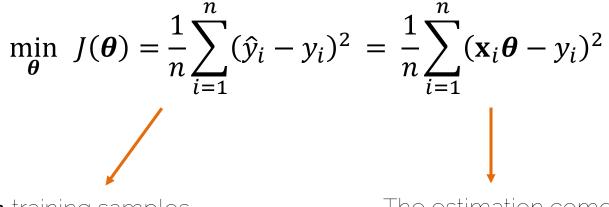
Linear Regression: Loss Function



• Linear least squares: an approach to fit a linear model to the data

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

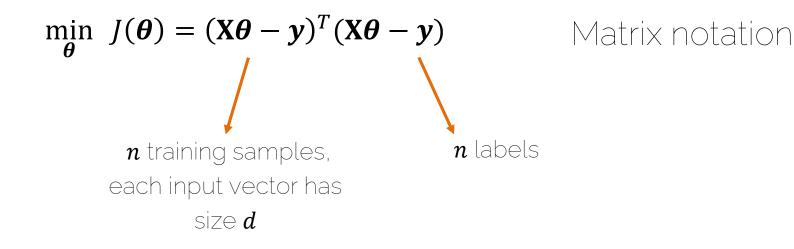
• Convex problem, there exists a closed-form solution that is unique.



n training samples

The estimation comes from the linear model

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \theta - y_i)^2$$



$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \theta - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y}) \qquad \text{Matrix notation}$$

More on matrix notation in the next exercise session

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \theta - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$Convex$$

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$
Optimum

Optimization

 $\frac{\partial J(\theta)}{\partial \theta} = 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y} = 0$

 $\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

We have found an analytical solution to a convex problem

Inputs: Outside temperature, number of people,

...

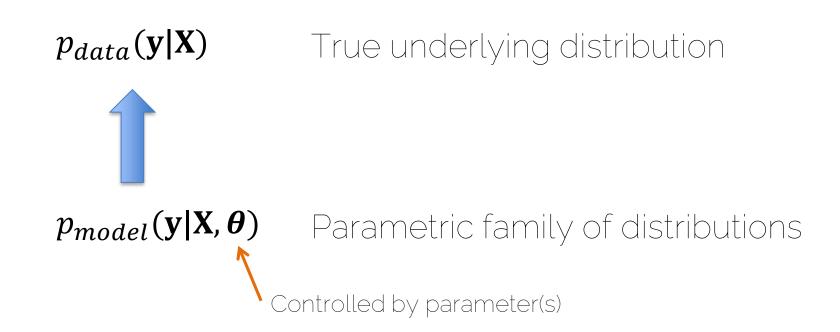
True output: Temperature of the building

Is this the best Estimate?

• Least squares estimate

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Maximum Likelihood



• A method of estimating the parameters of a statistical model given observations,

 $p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$

Observations from $p_{data}(\mathbf{y}|\mathbf{X})$

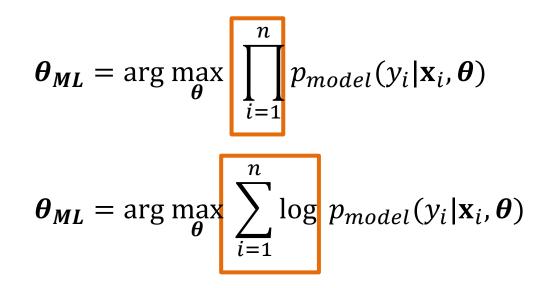
• A method of estimating the parameters of a statistical model given observations, by finding the parameter values that **maximize the likelihood** of making the observations given the parameters.

$$\boldsymbol{\theta}_{\boldsymbol{ML}} = \arg \max_{\boldsymbol{\theta}} p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

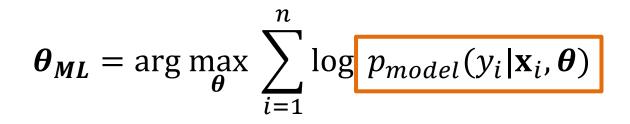
• MLE assumes that the training samples are independent and generated by the same probability distribution

$$p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p_{model}(y_i|\mathbf{x}_i, \boldsymbol{\theta})$$

"i.i.d." assumption

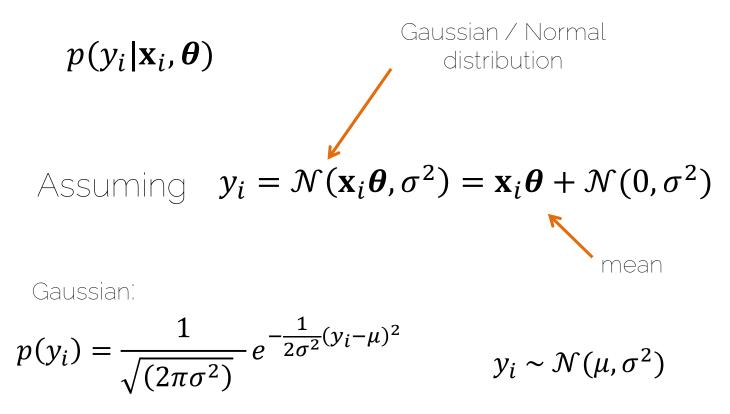


Logarithmic property $\log ab = \log a + \log b$

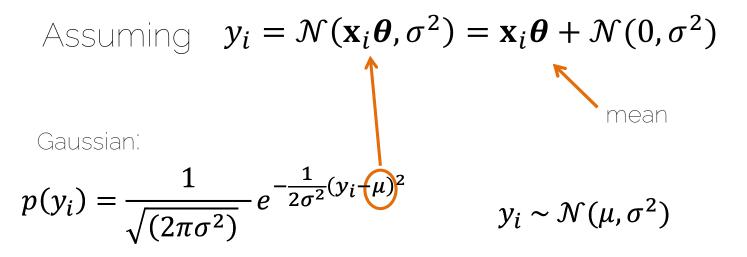


What shape does our probability distribution have?

$p(y_i | \mathbf{x}_i, \boldsymbol{\theta})$ What shape does our probability distribution have?



 $p(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = ?$



Back to Linear Regression

$$p(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2} e^{-\frac{1}{2\sigma^2}(y_i - \mathbf{x}_i \boldsymbol{\theta})^2}$$
Assuming $y_i = \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2) = \mathbf{x}_i \boldsymbol{\theta} + \mathcal{N}(0, \sigma^2)$
Gaussian:

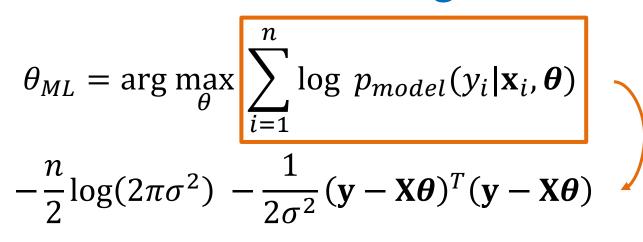
$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i - \boldsymbol{\mu})^2} \qquad y_i \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2)$$

Back to Linear Regression $p(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2} e^{-\frac{1}{2\sigma^2}(y_i - \mathbf{x}_i \boldsymbol{\theta})^2}$ n Original $\sum \log p_{model}(y_i | \mathbf{x}_i, \boldsymbol{\theta})$ optimization $\theta_{ML} = \arg \max_{\theta}$ A problem i=1

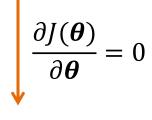
Back to Linear Regression

$$\sum_{i=1}^{n} \log \left[(2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2} (\mathbf{y}_i - \mathbf{x}_i \boldsymbol{\theta})^2} \right]$$
Canceling log and e

$$\sum_{i=1}^{n} -\frac{1}{2} \log (2\pi\sigma^2) + \sum_{i=1}^{n} \left(-\frac{1}{2\sigma^2} \right) (\mathbf{y}_i - \mathbf{x}_i \boldsymbol{\theta})^2$$
Matrix notation
$$-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$



Details in the exercise session!



How can we find the estimate of theta?

 $\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \mathbf{y}$

Linear Regression

• Maximum Likelihood Estimate (MLE) with a Gaussian assumption leads to the Least Squares Estimation

• Introduced the concepts of loss function and optimization to obtain the best model for regression

Image Classification

I2DL: Prof. Dai

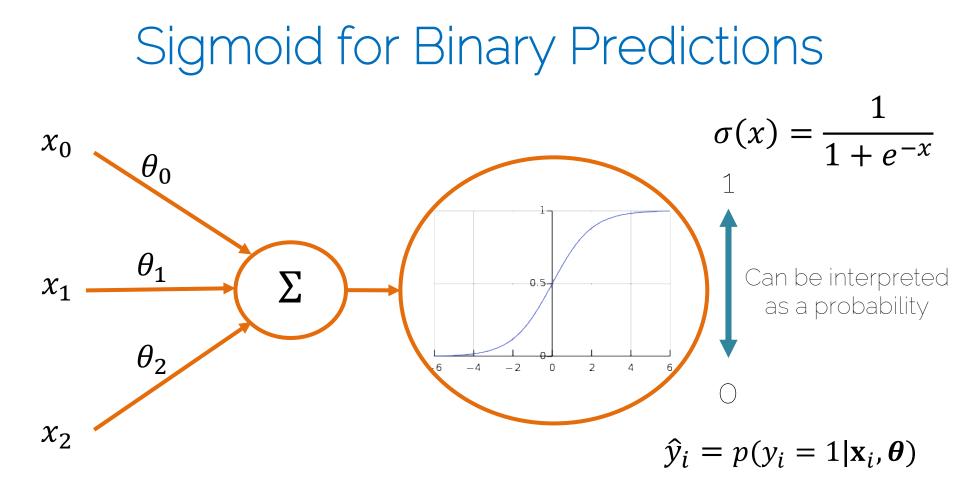
71

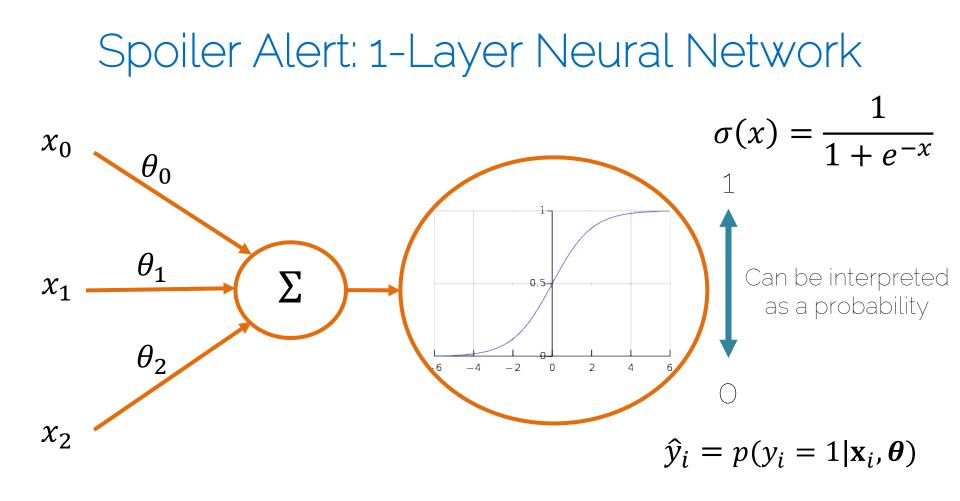
Regression vs Classification

• Regression: predict a continuous output value (e.g., temperature of a room)

- Classification: predict a discrete value
 - Binary classification: output is either 0 or 1
 - Multi-class classification: set of N classes

Logistic Regression





Logistic Regression: Max. Likelihood

Probability of a binary output

 $\hat{y}_i = p(y_i = 1 | \mathbf{x}_i, \boldsymbol{\theta})$

$$p(\mathbf{y}|\mathbf{X},\boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^{n} \hat{y}_i^{y_i} (1-\hat{y}_i)^{(1-y_i)}$$

n

Maximum Likelihood Estimate

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

Logistic Regression: Loss Function

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^{n} \hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{(1 - y_{i})}$$
$$\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^{n} \log \left(\hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{(1 - y_{i})} \right)$$
$$= \sum_{i=1}^{n} y_{i} \log \hat{y}_{i} + (1 - y_{i}) \log(1 - \hat{y}_{i})$$

Logistic Regression: Loss Function

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

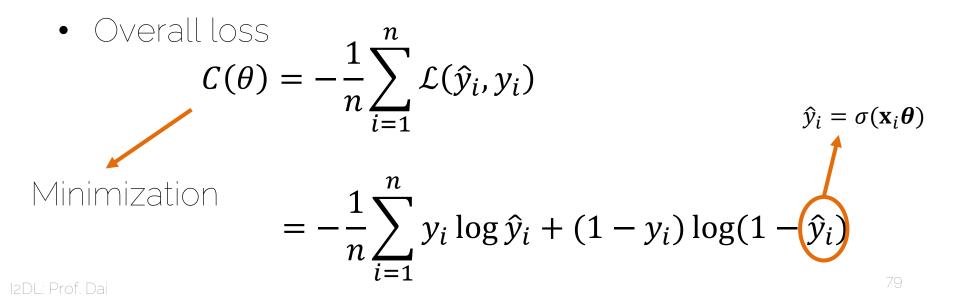
Referred to as *binary cross-entropy* loss (BCE)

 Related to the multi-class loss you will see in this course (also called *softmax loss*)

Logistic Regression: Optimization

• Loss for each training sample:

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$



Logistic Regression: Optimization

• No closed-form solution

• Make use of an iterative method \rightarrow gradient descent

Gradient descent – later on!

Insights from the first lecture

We can learn from experience
 -> Intelligence, certain ability to infer the future!

- Even linear models are often pretty good for complex phenomena: e.g., weather:
 - Linear combination of day-time, day-year etc. is often pretty good

Next Lectures

• Next exercise session: Math Recap II

- Next Lecture: Lecture 3:
 - Jumping towards our first Neural Networks and Computational Graphs

References for further Reading

- Cross validation:
 - <u>https://medium.com/@zstern/k-fold-cross-validation-</u>
 <u>explained-5aeba90ebb3</u>
 - <u>https://towardsdatascience.com/train-test-split-and-</u> <u>cross-validation-in-python-80b61beca4b6</u>

General Machine Learning book:

- Pattern Recognition and Machine Learning. C. Bishop.

See you next week 🕲