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A SImple Task
Image Classification
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Image Classification
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Image Classification

Occlusions




Image Classification

Background clutter
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A Simple Classifier
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Nearest Neighbor —
NN classifier - dog

distance



Nearest Neighbor

<K-NINl classifier = cat

distance



Nearest Neighbor

The Data NN Classifier 5NN Classifier

How does the NN classifier perform on training data”

What classifier is more likely to perform pest on test data?
What are we actually learning”?

12Dl Prof Dai Source: https.//commons.wikimedia.ora/wiki/File:Dataiclasses.png



https://commons.wikimedia.org/wiki/File:Data3classes.png

Nearest Neighbor

L1 distance: |x —c|
* Hyperparameters < L2 distance  ||lx = cl|»
No. of Nelghbors: k

e These parameters are problem dependent

« How do we choose these hyperparameters?
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Machine Learning for
Classification
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Machine Learning

« How can we learn to perform image classification?

Task Experience

l2DL: Prof Dai
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Machine Learning

 My(I) = {DOG, CAT}

/IN N\

Model Image Class Lapel

Model Params




Machine Learning

« Mg(I) = {DOG, CAT} Given i images with train labels

/IN N\

Model Image Class Lapel

Model Params

0" = arggnin Y.i D(Mg(I;) — lﬁ) =

'Distance” function {DOG, CAT}



Basic Recipe for Machine Learning
« Split your data

00% 207% 20%

train validation

|

-ind model params 6

Other splits are also possible (e.g., 80%/10%/10%)



Basic Recipe for Machine Learning
« Split your data

00% 207% 20%

train validation

\ )
I

-ind your hyperparameters

Other splits are also possible (e.g., 80%/10%/10%)



Basic Recipe for Machine Learning

A\ \

Test set s only used once!

\. J




Machine Learning

e How can we learn to perform image classification?

Task Experience

Performance
measure

2D Prof. Dal



Machine Learning

Unsupervised learning supervised learning

« |abelsortarget classes




Machine Learning

Unsupervised learning Supervised learning

CAT




Machine Learning

Unsupervised learning Supervised learning

CAT

« No label or target class

e Find out properties of
the structure of the
data

« Clustering (k-means,
PCA, etc)




Machine Learning

Unsupervised learning Supervised learning

CAT




Machine Learning

Unsupervised learning Supervised learning

CAT




Machine Learning

Unsupervised learning Supervised learmning

Reinforcement learming

>
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Machine Learning

Unsupervised learning Supervised learmning

Reinforcement learming

<€
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Machine Learning

Supervised learning
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_et's start with a simple linear model
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L Inear Declision Boundaries
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Whnat are the pros
and cons for using
LINnear decision
boundaries?
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Linear Regression

¢  Supervised learning

« Find alinear model that explains a target y given
nputs x




Linear Regression
Training

e —
sata POINES

nput (e.g., Image,
measurement) Labels
(e.g., cat/dog)

> 0
Model parameters

2D Prof. Dal



Linear Regression

can be parameters of a

[raning Neural Network
{xl:n’ yl:n} > o

Data points Model parameters

Xn+1,0 > Yn+1

Estimation

Testing

2D Prof. Dal



LInear Prediction

o Alinear model is expressed in the form

— Input dimension

5 =
2N

weights (1le., model parameters)

Input data, features



LInear Prediction

o A linear model is expressed Iin the form
d

yi = 90 + ZXUH] = HO + Xl'191 + xl-292 + et xl-de

> X



LInear Prediction
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LInear Prediction

X11 X1d
X21 X2d
Xn1 Xnd
1 X11
|1 X21
1 Xn1

X0



LInear Prediction

y = X0 Input features
Prediction (one sample has d
\ / features)
_5;1- -1 xll coe xlcd- -90_
Vol _ |1 %21 = X2a | |01 T——
2 N o : Model
L Yn 11 Xp1 0 Xna 116041  parameters

(d weights and 1 bias)



LInear Prediction
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LInear Prediction

\}@ How do we
O ~ .
o @ o obtainthe
' & 0 model?
Temperature -~ 6\6 &
fthe buildi L &L
E> e building Q“;@% O\s& S %\} S




How to Obtain the Model?

_abels (ground truth)
y

Data pcﬂnts

‘ Optimization ‘

L 0SS
function

Model parameters Eﬁwnann

6 Yy

12DL: Prof. Dal 44




How to Obtain the Model?

« Loss function: measures how good my estimation 1s
(how good my model is) and tells the optimization
method how to make it better.

« Optimization: changes the model Iin order to Improve
the loss function (e, to Improve my estimation)



_inear Regression: Loss Function

y o
e @
o o Prediction:
Pe o J, Temperature
-1 ° of the building
> X




_inear Regression: Loss Function

A
y o
8
o o Prediction:
Pe o lTemperature
-1 ° of the building
> X




_inear Regression: Loss Function

> X

L& Objective function
Minimizing J©) == 3 = y)? Energy
i=1 Cost function



Optimization: Linear Least Squares

* [inear least sqguares: an approach to fit a linear model
to the data

1 n
mgn J(8) = ;Zl:(f’i — yi)?

o Convex problem, there exists a closed-form solution
that Is unigue.



Optimization: Linear Least Squares

min J(0) = EZ(%‘ —yi)° = EZ(XL'H —¥i)
1= =1

/ |

n training samples The estimation comes
from the linear model



Optimization: Linear Least Squares

min J(0) = EZ(% —yi)° = EZ(XL'B —¥i)
1= =1

min /(8) = (X6 —y)" (X0 — ) Matrix notation
n training samples, n labels

each input vector has
size d



Optimization: Linear Least Squares

min J(0) = EZ(%‘ —yi)° = EZ(XL'H —¥i)
1=1 l=

min /(8) = (X6 —y)" (X0 — ) Matrix notation

| More on matrix notation in the next exercise session |




Optimization: Linear Least Squares

n

1% 1
min J(8) = EZ()AG —yi)? = EZ(XL'B — yi)?

i=1

min J(6) = (X6 —y)" (X6 —y)

l Convex

o) _

00

Optimum  —



Optimization Details in the

exerclse
session

0](6)

7 2XTX0 — 2XTy = 0
PY: y

0 = (XTX)"1XTy

We have found f True output

an analytical Inputs: Outside Termperature of

solution to a temperature, the bullding
convex problem number of people,



s this the best Estimate?

e [east squares estimate

1 n
J(08) = aZ(JA’i — ¥i)?
i=1
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Maximum Likelihood Estimate

Paata(YIX) True underlying distribution

|

Pmoaet(Y1X,0)  Parametric family of distributions

\

Controlled by parameter(s)



Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations,

Pmodel (Y|X' 9)

P

Observations from Paata (¥Y1X)



Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations, by finding the parameter
values that maximize the likelihood of making the
observations given the parameters

Oy = arg meax pmodel(lel 0)



Maximum Likelihood Estimate

« MLE assumes that the training samples are
iIndependent and generated by the same probability
distribution

n
pmodel(lex 9) — 1_[ pmodel()’i |Xir 0)

T i=1

1d. assumption



Maximum Likelihood Estimate

n |
Oy = arg mgx Pmodel (VilXi, @)

i=1

n
Oy = arg max z log| Pmoder (VilXi, 0)

=1

Logarithmic property logab = loga + logb



Back to Linear Regression

n
Oy = arg max 2 logl Pmoder (VilX;, @)
=1

l

What shape does our
orobabillity distripbution
nave’r



Back to Linear Regression

p(y;|x;,0)  What shape does our probability
distribution have?



Back to Linear Regression

Gaussian / Normal

p()’i |Xi; 0) distribution

Assuming i = N(x;0,0%) =x;0 + N'(0,0°)

mean
Gaussian:
1 2 2
>(Vi—u)
¢ 20 ~ N(,LL,O'Z)

p(y;) = o)



Back to Linear Regression

p(yilx;,0) =7

Assuming i = N(x;0,0%) =x;0 + N'(0,0°)

mean
Gaussian, |
1 1
252 Yi
€ @2 Yi ~ N(M, 0-2)

p(yi) = Tned)



Back to Linear Regression

1 2
p(y;|x;,0) = 2nc?)~?e 202(yl

Assuming i = N(x;0,0%) =x;0 + N'(0,0°)

mean
Gaussian, |
1 1
252 Yi
€ @2 Yi ~ N(M, 0-2)

p(yi) = Tned)



Back to Linear Regression

I SR
p(yilxl-,H) :@—1/26 20.2(371 @

Original = i
optimization Omp = arg max Z Pmodet VilXi, 0)
i=1

oroplem




Back to Linear Regression
Z log [(Zﬂaz)‘% ¢ 270 i_"i’”z]
=1 l Canceling log and e

1 2 C 1 2
—5log (2ma?) + Z — 53| Wi —x:0)
=1
l Matrix notation

-

Il
—

l

n

1
2\ T (m T (~
Zlog(Zna ) P (y —X0)" (y — X0)



Back to Linear Regression

0, = arg max

n
2

Detalls In the
exercise session!

n
2 log pmodel()’ilxi» 0)
=1

1
log(2mo?) — 72V~ X0)" (y — X60)

)

How can we find
M =0 the estimate of
00 theta?

0 = (XTX)"1xTy



Linear Regression

o Maximum Likelihood Estimate (MLE) with a Gaussian
assumption leads to the Least Squares Estimation

« |ntroduced the concepts of loss function and
optimization to obtain the best model for regression



) I
eR")




Regression vs Classification

« Regression: predict a continuous output value (e.g.,
temperature of a room)

« Classification: predict a discrete value
— Binary classification: output is either 0 or 1 _
— Multi-class classification: set of N classes
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_ogistic Regression




Sigmoid for Binary Predictions

1
14+e™™

X o(x) =
1

Can be interpreted
as a probability

2D Prof. Dal



Spoiler Alert: 1-Layer Neural Network

1
14+e™™

X0 o(x) =
1

Can be interpreted
as a probability

2D Prof. Dal



Logistic Regression: Max. L|kel|hood

w«?

« Probability of a binary Output {5‘!
p(yIX,60) =9 = ﬂym 900

« Maximum Likelihood Estimate Vi =p:=11x;,0)

Oy = arg mglx v|X, )



L ogistic Regression: Loss Function

p(ylX,0) =y = ﬂyiyiu — §)A-7

=1

n
logp(ylX,0) = Z log (yl.“(1 — yi)(l—yi))
i=1

n
= z yilogy; + (1 — y;) log(1 — ;)

=1



L ogistic Regression: Loss Function

L, y) = —lyilogy; + (1 —y;) log(1 — ¥;)]

Referred to as binary cross-entropy loss (BCE) ‘

« Related to the multi-class loss you will see inthis
course (also called softmax loss)



Logistic Regression: Optimization
e [ossforeach traning sample
L&, yi) = —[yilogd; + (1 — y;) log(1 — ¥;)]

e« Overall loss

c(6) = ——z LSuy1)

/ yi = o(x;0)
Minimization 1
=——) Vi logy; + (1 —y;)log(1—

[

M:

Il
[y



Logistic Regression: Optimization

 NoO closed-form solution

« Make use of an iterative method - gradient descent

Gradient descent -
later on!




Insights from the first lecture

o \X/e can learn from experience
-> Intelligence, certain ability to infer the future!

o Even linear models are often pretty good for
complex phenomena: e.g., weather:

— Linear combination of day-time, day-year etc. is often
oretty good



Next Lectures

« Next exercise session: Math Recap |l

« Next Lecture: Lecture 3

— Jumping towards our first Neural Networks and
Computational Graphs



References for further Reading

« (Cross validation:
— nhttps.//medium.com/@zstern/k-fold-cross-validation-

explained-Raenagoenni

— nhttps.//towardsdatascience.com/train-test-split-and-
cross-validation-in-python-80b61becadbt

« (General Machine Learning book:
— Pattern Recognition and Machine Learning. C. Bisnop.


https://medium.com/@zstern/k-fold-cross-validation-explained-5aeba90ebb3
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
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See you next week ©



