

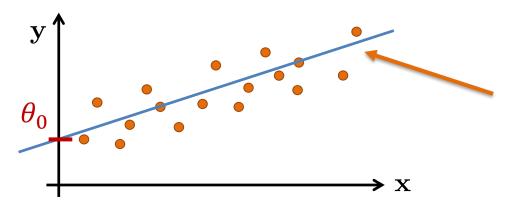
Introduction to Neural Networks

From Linear and Logistic Regression to Neural Networks

Linear Regression

= a supervised learning method to find a linear model of the form

$$\hat{y}_i = \theta_0 + \sum_{j=1}^d x_{ij}\theta_j = \theta_0 + x_{i1}\theta_1 + x_{i2}\theta_2 + \dots + x_{id}\theta_d$$



Goal: find a model that explains a target y given the input x

Logistic Regression

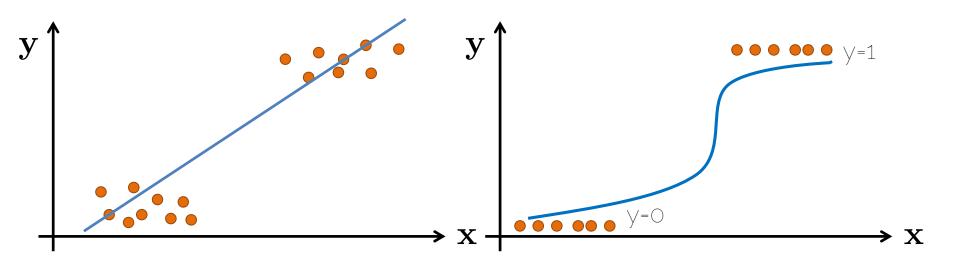
Loss per training sample

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

• Overall loss

$$\mathcal{C}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \cdot \log[\widehat{y_i}] + (1 - y_i) \cdot \log[1 - \widehat{y_i}])$$
Minimization
$$\widehat{y_i} = \sigma(x_i \boldsymbol{\theta})$$

Linear vs Logistic Regression



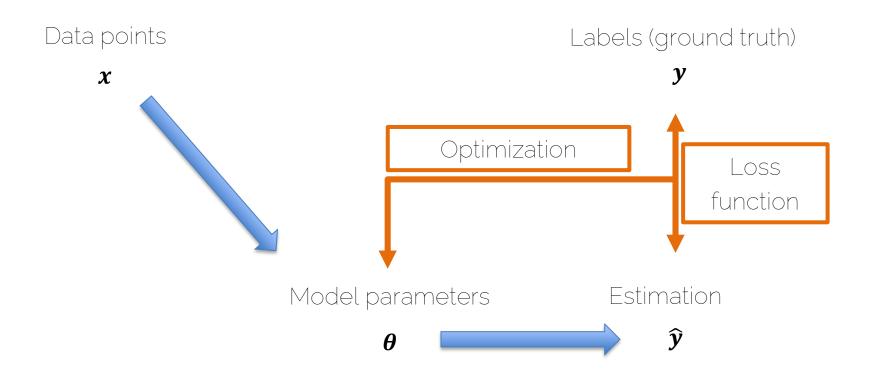
Predictions can exceed the range of the training samples

→ in the case of classification

[0:1] this becomes a real issue

Predictions are guaranteed to be within [0:1]

How to obtain the Model?



Linear Score Functions

Linear score function as seen in linear regression

$$f_i = \sum_{j} w_{i,j} x_j$$

 $f = W x$ (Matrix Notation)

Linear Score Functions on Images

• Linear score function f = Wx

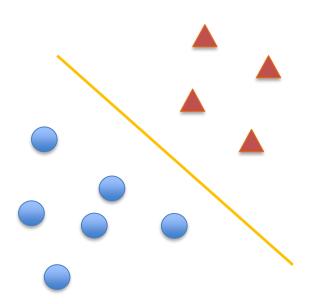
On CIFAR-10

On ImageNet

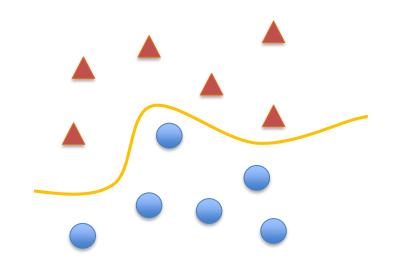
Source:: Li/Karpathy/Johnson

Linear Score Functions?

Logistic Regression



Linear Separation Impossible!



Linear Score Functions?

- Can we make linear regression better?
 - Naïve idea: Multiply with another weight matrix W_2

$$\hat{f} = W_2 \cdot W_1 \cdot x$$

Operation remains linear:

$$W = W_2 \cdot W_1$$
$$\hat{f} = Wx$$

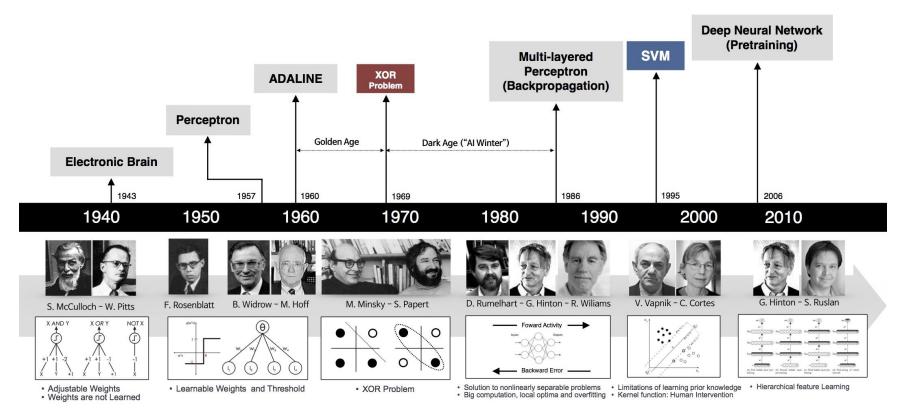
Solution → add non-linearity!!

• Linear score function f = Wx

- Neural network is a nesting of 'functions'
 - 2-layers: $f = W_2 \max(0, W_1 x)$
 - 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
 - 4-layers: $f = W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x)))$
 - 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
 - ... up to hundreds of layers

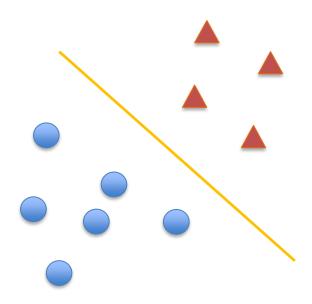
Introduction to Neural Networks

History of Neural Networks

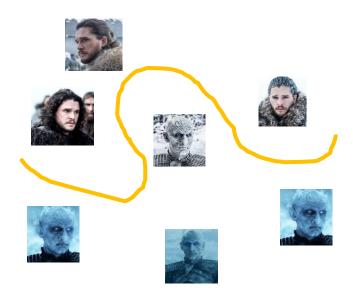


Source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.html

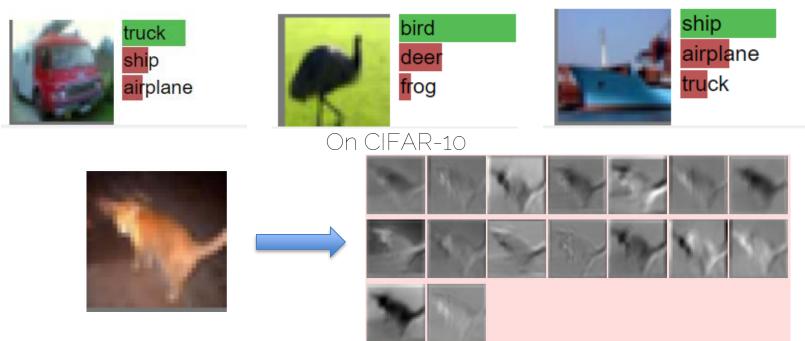
Logistic Regression



Neural Networks



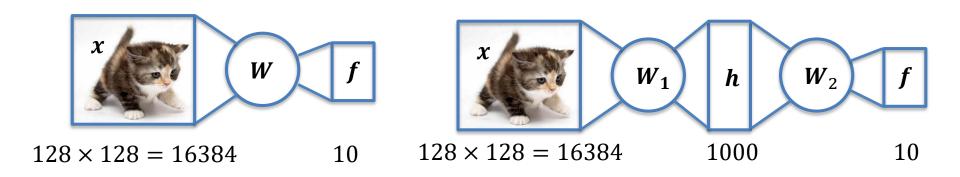
• Non-linear score function $f = ... (\max(0, \frac{W_1x}{}))$



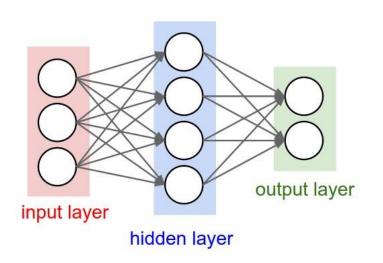
Visualizing activations of the first layer.

1-layer network: f = Wx

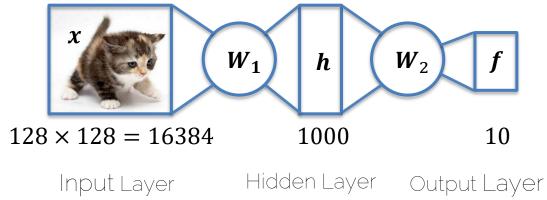
2-layer network: $f = W_2 \max(0, W_1 x)$



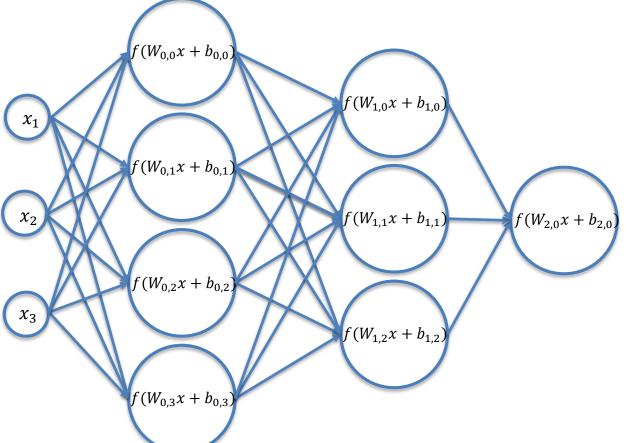
Why is this structure useful?

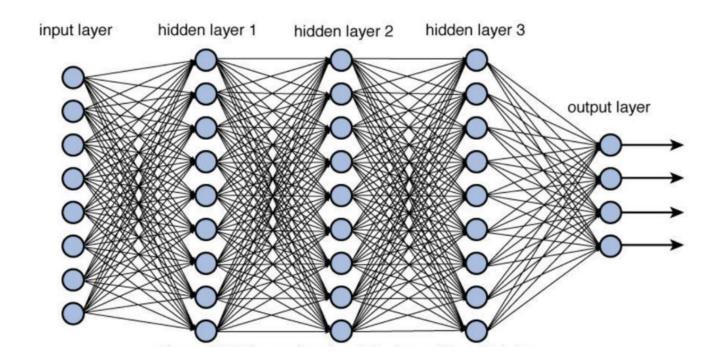


2-layer network: $f = W_2 \max(0, W_1 x)$



Net of Artificial Neurons





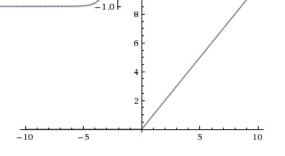
Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Activation Functions

Sigmoid: $\sigma(x) = \frac{1}{(1+e^{-x})}$

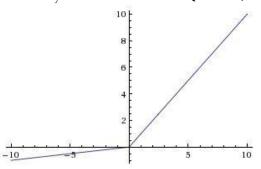
tanh: tanh(x)

ReLU: $\max(0, x)$



0.5

Leaky ReLU: max(0.1x, x)



Parametric ReLU: $max(\alpha x, x)$

Maxout
$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

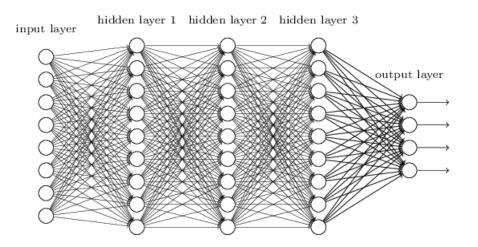
$$\exists \bot \cup f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha(e^x - 1) & \text{if } x \le 0 \end{cases}$$

$$f = W_3 \cdot (W_2 \cdot (W_1 \cdot x)))$$

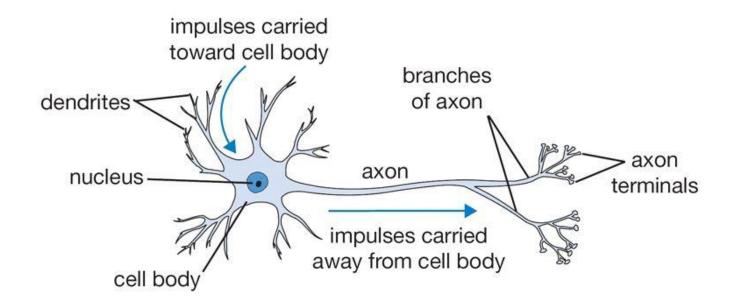
Why activation functions?

Simply concatenating linear layers would be so much cheaper...

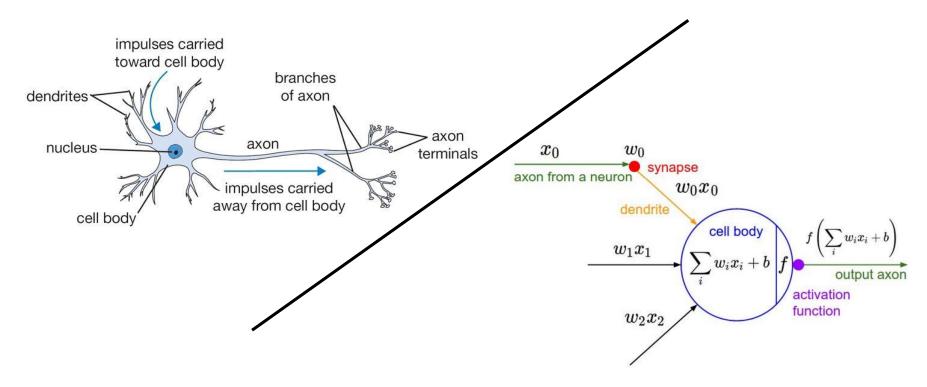
Why organize a neural network into layers?



Biological Neurons



Biological Neurons



Credit: Stanford CS 231n

Artificial Neural Networks vs Brain

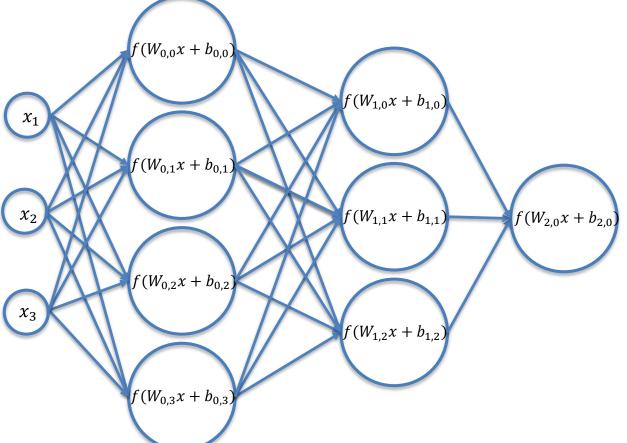
Artificial neural networks are **inspired** by the brain, but not even close in terms of complexity!

The comparison is great for the media and news articles though...

Output

Description:

Artificial Neural Network



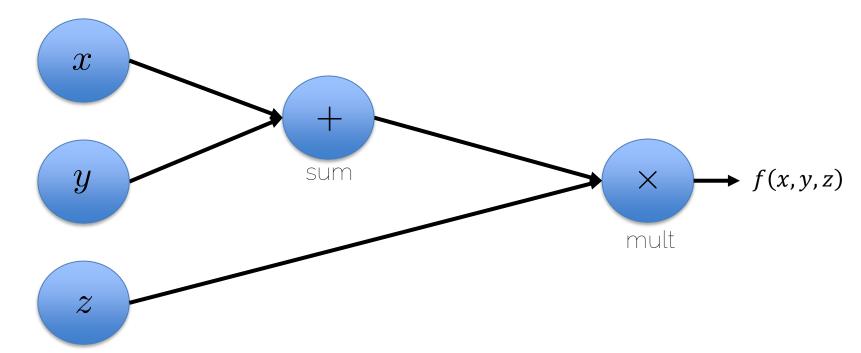
26 Prof. Dai

- Summary
 - Given a dataset with ground truth training pairs $[x_i; y_i]$,
 - Find optimal weights and biases \boldsymbol{W} using stochastic gradient descent, such that the loss function is minimized
 - Compute gradients with backpropagation (use batch-mode; more later)
 - Iterate many times over training set (SGD; more later)

- Directional graph
- Matrix operations are represented as compute nodes.

- Vertex nodes are variables or operators like +, -, *, /, log(), exp() ...
- Directional edges show flow of inputs to vertices

• $f(x, y, z) = (x + y) \cdot z$



Evaluation: Forward Pass

• $f(x, y, z) = (x + y) \cdot z$ Initialization x = 1, y = -3, z = 4 \boldsymbol{x} d = -2sum mult

• Why discuss compute graphs?

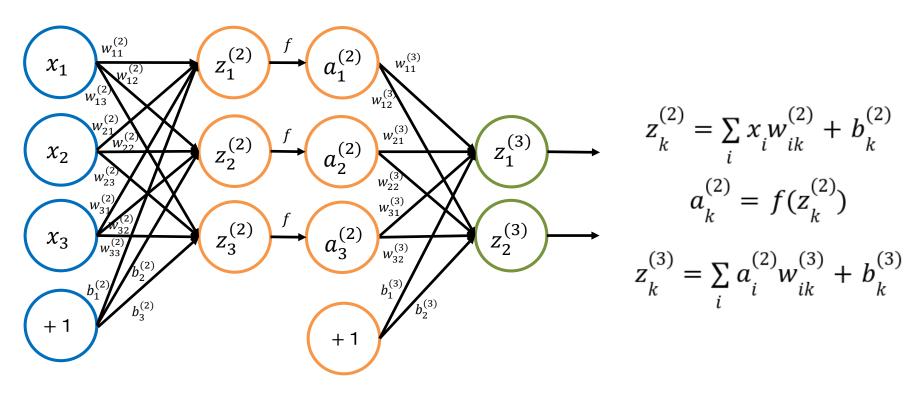
• Neural networks have complicated architectures $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$

Lot of matrix operations!

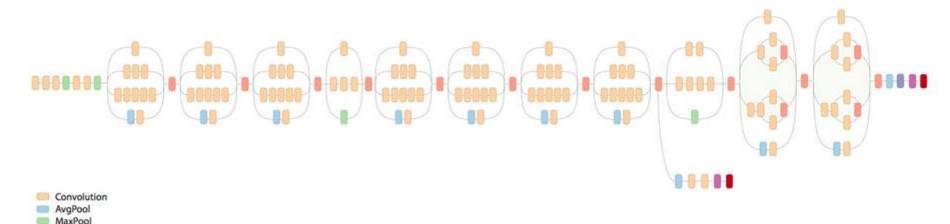
Represent NN as computational graphs!

A neural network can be represented as a computational graph...

- it has compute nodes (operations)
- it has edges that connect nodes (data flow)
- it is directional
- it can be organized into 'layers'



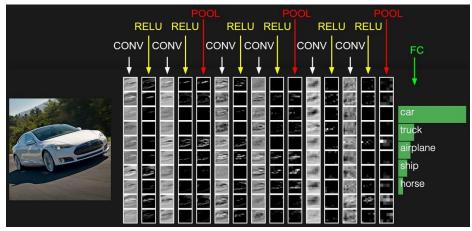
• From a set of neurons to a Structured Compute Pipeline



[Szegedy et al., CVPR'15] Going Deeper with Convolutions

Concat Dropout Fully connected Softmax

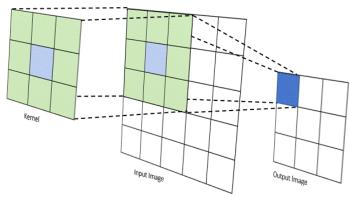
- The computation of Neural Network has further meanings:
 - The multiplication of \boldsymbol{W} and \boldsymbol{x} : encode input information
 - The activation function: select the key features



Source; https://www.zybuluo.com/liuhui0803/note/981434

Computational Graphs

- The computations of Neural Networks have further meanings:
 - The convolutional layers: extract useful features with shared weights



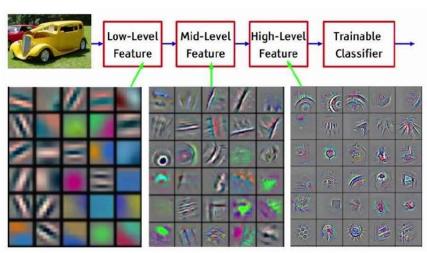
Source: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

Computational Graphs

 The computations of Neural Networks have further meanings:

- The convolutional layers: extract useful features with

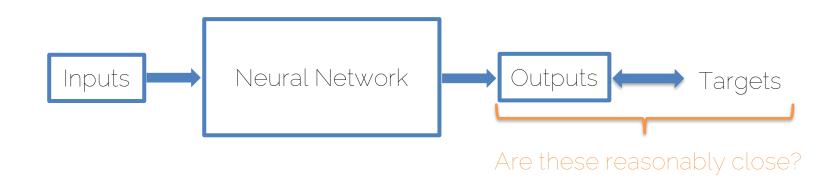
shared weights



Source: https://www.zybuluo.com/liuhui0803/note/981434

Loss Functions

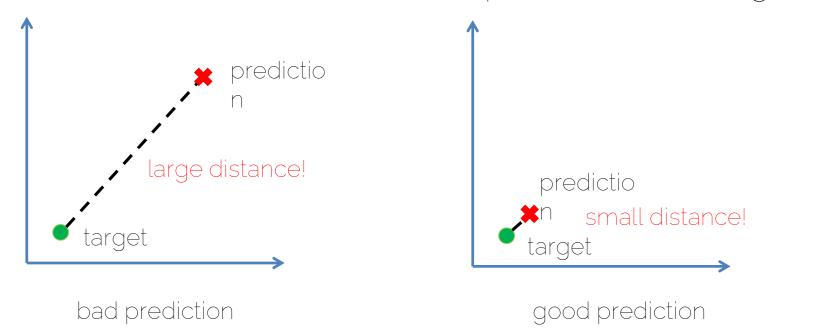
What's Next?



We need a way to describe how close the network's outputs (= predictions) are to the targets!

What's Next?

Idea: calculate a 'distance' between prediction and target!



Loss Functions

 A function to measure the goodness of the predictions (or equivalently, the network's performance)

Intuitively, ...

- a large loss indicates bad predictions/performance
 (→ performance needs to be improved by training the model)
- the choice of the loss function depends on the concrete problem or the distribution of the target variable

Regression Loss

1 | OSS!

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y}_i||_1$$

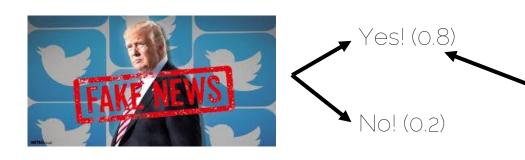
• MSE Loss:

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y}_i||_2^2$$

Binary Cross Entropy

Loss function for binary (yes/no) classification

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log \widehat{y}_i + (1 - y_i) \log(1 - \widehat{y}_i)]$$



The network predicts the probability of the input belonging to the "yes" class!

Cross Entropy

Generalizes to multi-class classification:

$$y_{ik} = \begin{cases} 1 & if \ x_i \in class \ k \\ 0 & else \end{cases}$$

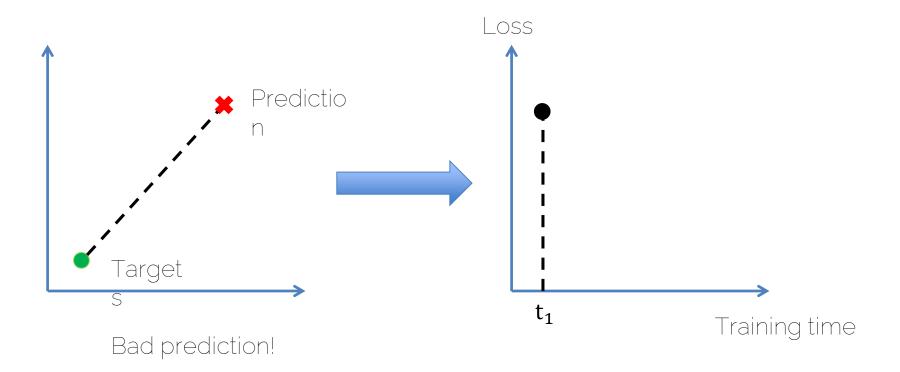
$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = -\sum_{i=1}^{n} \sum_{k=1}^{\kappa} (y_{ik} \cdot \log \widehat{y}_{ik})$$

dog (0.1)
rabbit (0.2
duck (0.7)

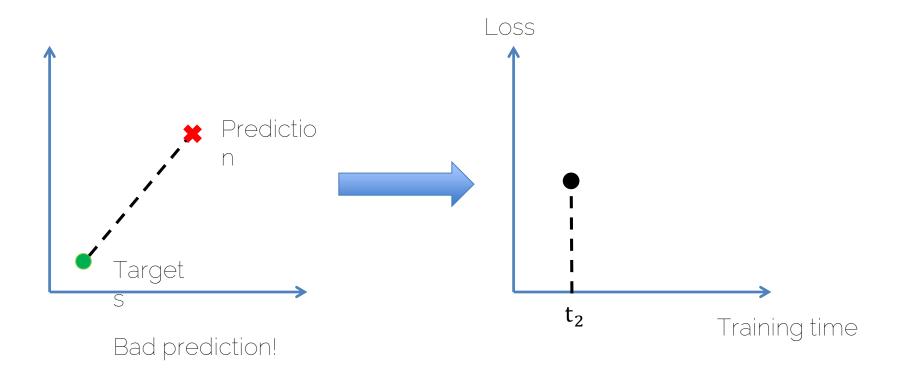
More General Case

- Ground truth: y
- Prediction: \hat{y}
- Loss function: $L(y, \hat{y})$
- Motivation:
 - minimize the loss <=> find better predictions
 - predictions are generated by the NN
 - find better predictions <=> find better NN

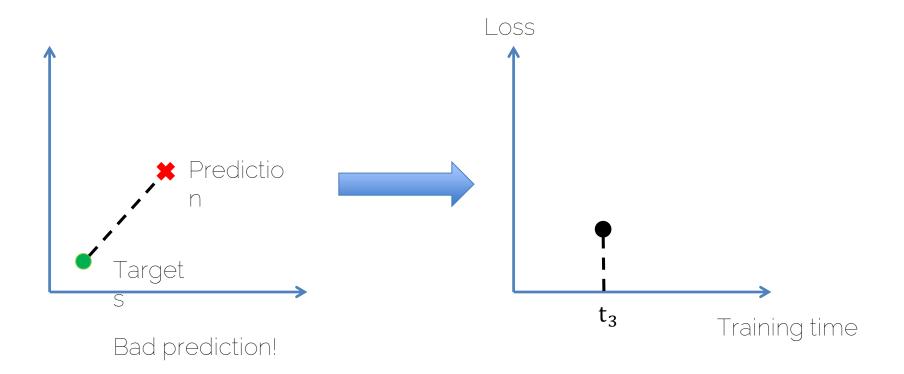
Initially



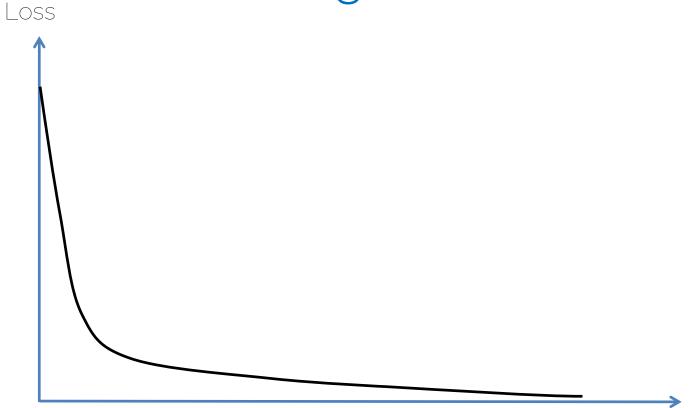
During Training...



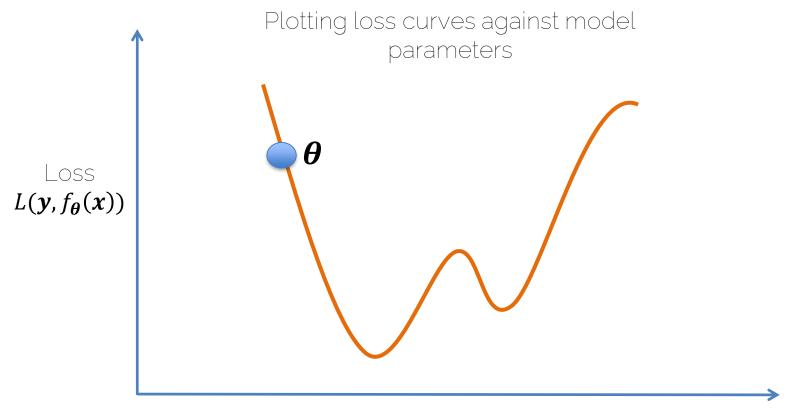
During Training...



Training Curve



Training time



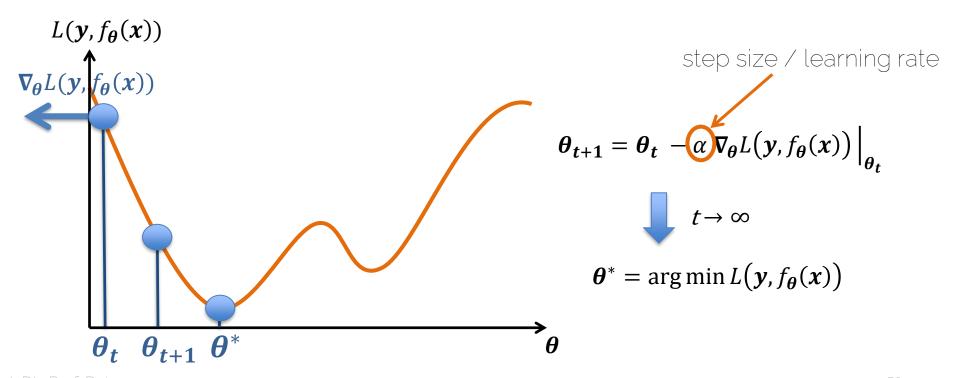
Parameters $\boldsymbol{\theta}$

- Loss function: $L(y, \hat{y}) = L(y, f_{\theta}(x))$
- Neural Network: $f_{\theta}(x)$
- Goal:
 - minimize the loss w.r.t. $\boldsymbol{\theta}$

Optimization! We train compute graphs with some optimization techniques!

Gradient Descent

Minimize loss $L(y, f_{\theta}(x))$ w.r.t. θ :



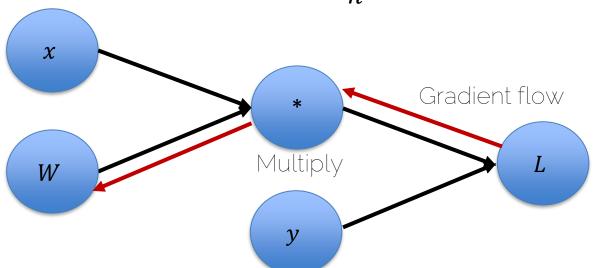
- Given inputs ${m x}$ and targets ${m y}$
- Given one layer NN with no activation function

$$f_{\theta}(x) = Wx$$
, $\theta = W$

Later
$$\theta = \{W, b\}$$

• Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y_i}||_2^2$

- Given inputs ${m x}$ and targets ${m y}$
- Given one layer NN with no activation function
- Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i| W \cdot x_i||_2^2$



- Given inputs x and targets y
- Given one layer NN with no activation function

$$f_{\theta}(x) = Wx, \qquad \theta = W$$

- Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||\boldsymbol{W} \cdot \boldsymbol{x}_i \boldsymbol{y}_i||_2^2$
- $\nabla_{\theta} L(\mathbf{y}, f_{\theta}(\mathbf{x})) = \frac{2}{n} \sum_{i=1}^{n} (\mathbf{W} \cdot \mathbf{x}_{i} \mathbf{y}_{i}) \cdot \mathbf{x}_{i}^{T}$

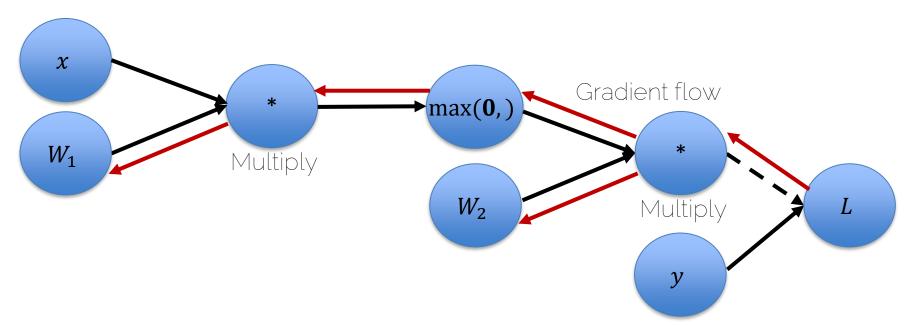
- Given inputs ${m x}$ and targets ${m y}$
- Given a multi-layer NN with many activations

$$f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$$

- Gradient descent for $L(\boldsymbol{y},f_{\boldsymbol{\theta}}(\boldsymbol{x}))$ w.r.t. $\boldsymbol{\theta}$
 - Need to propagate gradients from end to first layer (W_1).

IZDL. PTOI. Dal

- Given inputs ${m x}$ and targets ${m y}$
- Given multi-layer NN with many activations



- Given inputs ${m x}$ and targets ${m y}$
- Given multilayer layer NN with many activations $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
- Gradient descent solution for $L(y, f_{\boldsymbol{\theta}}(x))$ w. r. t. $\boldsymbol{\theta}$
 - Need to propagate gradients from end to first layer (W_1)
- Backpropagation: Use chain rule to compute gradients
 - Compute graphs come in handy!

- Why gradient descent?
 - Easy to compute using compute graphs
- Other methods include
 - Newtons method
 - L-BFGS
 - Adaptive moments
 - Conjugate gradient

Summary

- Neural Networks are computational graphs
- Goal: for a given train set, find optimal weights

- Optimization is done using gradient-based solvers
 - Many options (more in the next lectures)

- Gradients are computed via backpropagation
 - Nice because can easily modularize complex functions

61

Next Lectures

- Next Lecture:
 - Backpropagation and optimization of Neural Networks

Check for updates on website/piazza regarding exercises