TUTi

Scaling Optimization

_ecture 4 Recap

Neural Network

output layer
input layer
hidden layer

Source http//cs231n.aithub.io/neural-networks-1/

12DL: Prof, DNagssner

http://cs231n.github.io/neural-networks-1/

Compute Graphs — Neural Networks

Input layer Output layer Goal We want to compute gradients of
f 1 \ (1 \ the loss function L w.rt all weights w
L= z L;
X0
‘@ Yo L: sum over loss per sample, eg.
2 l0ss — simply sum up squares:

@ - Li =@ —y)?

Xy — Use chain rule to compute partials
5;1' = A(bl + kai,k) dL _ dL 6571
" dwix 09 0wy
Activation bias

We want to compute gradients wrt

funct
Jneton all weights W all biases b

summary

Caf

e We have IWoos
— (Directional) compute grapn -
— Structure graph into layers o e V) = |5 of

— Compute partial derivatives w.rt Wim.n
welghts (unknowns) 5

| Oby |

o Next

— Find weights based on gradients Gradient step:

W' =W — aViy fieyy (W)

Optimization

Gradient Descent

x* = argmin f (x)

INnitialization

Optimum

2D Prof. Dal

Gradient Descent

x* = argmin f (x)

INnitialization
Follow the StopA
of the
DERIVATIVE
dfe) _ . feeth) —f(x) Optimum
dx h—0 h

2D Prof. Da

Gradient Descent

. . . Direction of
« From derivative to gradient qreatest
increase of the
d];(x) V.f(x) function
X
« Gradient steps in direction of negative gradient

Vief (x)
x'=x—aV.f(x)

L earning rate

Gradient Descent

| | | Direction of
« From derivative to gradient greatest
iNncrease of the
df (x) 7. f(x) function
dx

« Gradient steps in direction of negative gradient

_ xf(x)
x'=x—aV.f(x)

SMALL Learning rate

Gradient Descent

| | | Direction of
« From derivative to gradient greatest
iNncrease of the
df (x) 7. f(x) function
dx

« Gradient steps in direction of negative gradient

f(x) ¢ x
x'=x—aV.f(x)

LARGE Learning rate

Gradient Descent

x* = argmin f(x)
No guarantee to reach
the global optimum

Initialization

Local optimum Global optimum

12DL: Prof. Dal

Convergence of Gradient Descent

« Convex function: all local minima are global minima
)

f(x) Is convex iff the line between any two points lies above or on the graph.

DL Prof. Dai

Convergence of Gradient Descent

* Neural networks are non-convex
— many (different) local minima
— no (practical) way to say which one is globally optimal

INnitialization

Local optimum S
12DL Prof. Dai

Convergence of Gradient Descent

Big learning rate Small learning rate

Overshooting, oscillation, Slow convergence
algorithm diverges

Source: https.//builtin.com/data-science/gradient-descent

https://builtin.com/data-science/gradient-descent

Convergence of Gradient Descent

Cost
A

Plateau

> 0

. Global
Local minimum -
minimum

Source: A Geron

Gradient Descent: Multiple Dimensions

.
»

((ﬂﬂ

4

»
>

Source: builtin.com/data-science/gradient-descent

Various ways to visualize.

l2DL: Prof Dai 17

http://builtin.com/data-science/gradient-descent

Gradient Descent: Multiple Dimensions

Source: hittp.//bloa.datumbox.com/wp-content/uploads/2013/10/gradient-descent png

l2DL: Prof Dai

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

Gradient Descent for Neural Networks

| 0SS function - Of -
Li = @; —y)?

aWo,o,o

| .

— af

@ Yo Vw,pfiayy (W) = ow,

mn

A

1

af
output layer | Obym |

input layer R
Vi =A(by; + z hiwy; ;)
J

hidden layer
4

e 1y = A(by ; + z XkWo,j k) A(x) = max(0, x)
K

oL Prof. Da 19

Just simple:

Gradient Descent: Single Training Sample

« Glven aloss function L and a single training sample
X, ¥i}
« Find best model parameters 8 = {W, b}
e (COst Ll-(H, xi,yi)
— 0 = argmin L;(x;,y;)
« Cradient Descent
— Initialize 8 with random’ values (more on that later)
— 0%t = 0% — aVyL; (0%, x;,v;)
— |terate until convergence: |@%+! — 8%| < €

Gradient Descent: Single Training Sample

+ 0T = 0% —alyL; (6%, x;, ¥:)
l | Training sample

\Weights, biases after » Loss function
update step » Gradient w.rt

» | earning rate

v
Welghts, biases at step k
(current model)

« VgLi(0%,x;,y;) computed via backpropagation
* lypically dim (VgLi(Ok,xi,yi)) = dim(@) > 1 million

Gradient Descent: Multiple Training Samples

Given a loss function L and multiple (n) training
samples {x;, y;}

—Iind best model parameters @ = {W, b}

CostL==%T, Li(8, %, ;)

— 0 = argmin L

Gradient Descent: Multiple Training Samples

« Update step for multiple samples
0" = 0% — aVpL(0", X(1.n} Y1)

« Gradient is average / sum over residuals

VoL (0%, X(1.np Yi1.m}) = %27{21 l|79Ll-(0",xl-,y i?

Reminder: this comes from backprop.

« Oftenpeople are lazy and just write: VL = Y1 VoL;
— omitting % IS not 'wrong, It Just means rescaling the
learning rate

Side Note: Optimal Learning Rate

Can compute optimal learning rate a using Line Searcn
(optimal for a given set)

1. Compute gradient: VoL = % Vel
2. Optimize for optimal step a:
arg main L(B% —aVyL)

ék+1

3. 9k+1 — Ok — C(VHL

Not that practical for DL since
t requires many evaluations.

Gradient Descent on Tralin Set

e Glven large train set with n training samples {x;, y;}
— Let'ssay 1 million labeled images
— Let's say our network has 500k parameters

o (Cradient has 500k dimensions
* n=1million
— Extremely expensive to compute

Stochastic Gradient Descent (SGD)

e [fwe have n training samples, we need to compute
the gradient for all of them which is 0(n)

o |f we consider the problem as empirical risk
mMinimization, we can express the total loss over the

training data as the expectation of all the samples

(2 Li(0,x;, yl)) Ei1,..m[Li(6, x5, ¥:)]

Stochastic Gradient Descent (SGD)

* The expectation can be approximated with a small
subset of the data

1
IEi~[1,...,Tl] [Ll(eJ Xi, yl)] ~ mz]'es (L] (9; xj) y])) with S € {1) Ly Tl}

Minibatch
choose subset of trainset m K n

B; = {{x1, y1} {x2, Y2} oo .\, Y3}
{B1, B2, ..., Byym}

Stochastic Gradient Descent (SGD)

« Minibatch size Is hyperparameter
— Typically power of 2 —» 8,16, 32, 64, 128.

— Smaller batch size means greater variance in the
gradients

— NOISy updates
— Mostly imited by GPU memory (in backward pass)
- Eg,
e Train set has n = 22% (about 1 million) images
« With batch size m = 64 By _n/m = By 16384 MiNibatches

(Epoch - complete pass through training set)

Stochastic Gradient Descent (SGD)

9k+1

w{l"m}’ y{lm})

" k now refers to k-th iteration
_ m
VoL = — i=1VeLi

\ m training samples in the current minibatch
Gradient for the k-th minibatch

Note the terminology: Iteration vs epoch

Convergence of SGD

Suppose we want to minimize the function F(@) with
the stochastic approximation

p*+t = 6% — o, H(0%, X)

where aq, a, ... a, 1S a sequence of positive step-sizes
and H(0%,X) is the unbiased estimate of VF(8%), ie

E[H(6%, X)| = VF(6%)

Robbins, H.and Monro, S, "A Stochastic Approximation Method' 1951,
| rc

Convergence of SGD

ok*1 = gk — o, H(6%, X)

converges to a local) minimum If the following
conditions are met

1) a,=20,vyn=0

) Z;.f:l dp = O
) Y1 @h < 00
)

N

The proposed sequence by Robbins and Monro is a,, & %,for n>0

Problems of SGD

e (Gradient is scaled equally across all dimensions
— &, cannot Independently scale directions

— need to have conservative min learning rate to avold
divergence

— Slower than necessary

e Finding good learning rate is an art by itself
— More next lecture

Gradient Descent with Momentum

=— >

Source: A.Ng
We're making many steps
back and forth along this Would love to go faster here.
dimension. \Would love to e, accumulated gradients over

track that this is averaging time
out over time.

Gradient Descent with Momentum

=B - vk — VL(H")
)</ \

| Grad@m of current minibatch
veloCity |earning rate

accumulation rate
(‘friction’. momentum)

9k+1 — Bk + vk+1
AN

velocity
welghts of model

Exponentially-weighted average of gradient
important: velocity v* is vector-valued

[Sutskever et al., ICML13] On the importance of initialization and momentum in deep learning
12DL: Prof. Da

Gradient Descent with Momentum

Step will be largest when a sequence of
gradients all point to the same direction

Hyperparameters are a,
B Is often setto 0.9

—30 ! !
-30 —20 —-10 O 10 20
Source: I. Goodfellow

0k+1 — ek + vk+1

Gradient Descent with Momentum

e Canitovercome local mnma~

9k+1 — ek + vk+1

12DL: Prof. Dal

Nesterov Momentum

e | ook-ahead momentum
pk+1 = 9k + B - v
pht+l — ,B vk — o - VHL('ék+1)
9k+1 — Hk + vk+1

Nesterov, Yurii E."A method for solving the convex programming problem with convergence rate O (1/k" 2)." Dokl akad. naukr Sssr. Vol 269.
1983

Nesterov Momentum

* First make a big jump in the direction of the previous accumulated gradient.
* Then measure the gradient where you end up and make a correction.

| E
. 2

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum
pk+1 — gk +ﬁ,vk
Source: G, Hinton ~
vk+1 — ,8 . ’Uk —a- VBL(9k+1)
9k+1 — Hk + vk+1

Root Mean Squared Prop (RMSProp)

——>

Small gradients

Large gradients

source: Andrew. Ng

« RMSProp divides the learning rate by an
exponentially-decaying average of squared gradients.

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.” COURSERA: Neural
networks for machine learning 4.2 (2012). 26-31.

12DL: Prof. Da

RMSProp

Sk+1 = IB y Sk + (1 — ,B]_[VQL o VHL],:\

Flement-wise multiplication
Vol .

.\/W-I-E\

Flement-wise division

9k+1 — Bk—a

Hyperparameters a, B, €

/ I Typically 1078

Needs tuning! Often 0.9

RMSProp

==

sourcer A Ng

Y-Direction
Large gradients

X-direction Small gradients
(Uncentered) variance of gradients ...

— second momentum - — i‘ =pB-sk+(1- B)[VgL o VBL]_l

I We're dividing by square gradients; kel _ ok VoL
| - Division in Y-Direction will be ! 6 =0 W+ c

I
| large :
- Division in X-Direction will be i | |
I Can increase learning ratel

RMSProp

« Dampening the osclillations for high-variance
directions

« Can use faster learning rate because it is less likely to
diverge
— Speed up learning speed
— Second moment

Adaptive Moment Estimation (Adam)

ldea : Combine Momentum and =S -ron

k+1 _ k kY First momentum:
m =pf1-m* + (1 - :Bl)VOL(H) ‘ mean of gradients

it = B, vF + (1 = B,)[VeL(0%) o VoL(6%)]

mk+1 \
k+1l = g% — . Note : This is not the

Voktlie update rule of Adam Second momentum:
variance of gradients

p
Q. What happens at k = 0?]

A \We need bias correctionasm® =0 andv® = 0
o

[Kingma et al., ICLR15] Adam: A method for stochastic optimization
12DL: Prof. Dai

Adam : Bias Corrected

o Combines Momentum and RMSProp

mktl = B -mk + (1 — BVeL(0F) vl =B, - vF + (1 — B,)[VeL(6%) o VyL(6%)

o mk and vk are initialized with zero
— DIas towards zero
— Need bilas-corrected moment updates

Update rule of Adam

r -- -I
I k+1 k+1 I
| ~ k+1 _ m ~k+1 _ v k+1 K mkt1

;. mtT = pretl = —— QK+l = gk _ . I
] 1 _ ﬂ1k+1 1 _ ﬁ2k+1 /9k+1+€ :

Adam

« EXponentially-decaying mean and of
gradients (combines first and order
momentum)

* Hyperparameters a, 1. B, €

/// -[= [, -mF 4+ (1 — B,)VL(6%)

_ k k k
Needs tuning! 10ften 0.9 Typically 10~ 8| = P 'kv + (1 - ,82)[V9L£0) ° VGL(B)]
Often 0.999 a1 — _m prt1 - v
________________ 1—ﬁ1k+1 1—ﬁ2k+1
~k+1
T 0k+1 — ek a m

Defaults in PyTorch VoK1 4 ¢

There are a few others.

Vanilla SGD

Momentum

~RMSProp

Adagrad Adam is mostly method
Adadelta of choice for neural networks!
AdaMax

Nada

AMSGrad t's actually fun to play around with SGD
ProxProp ﬁiiﬁiijamd;mnjgetpweﬁyanedeﬂe

feedback ©

2D Prof. Dal

Convergence

N — seo
N - Momentumg
~ NAG -
— Adagrad |

{ Adadelta
- Rmsprop

e hitp//ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/

2D Prof. Dal

Cconvergence

SGD
Momentum

- NAG

Adagrad
Adadelta
Rmsprop

1.0

-1.5
Source: http.//ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/

Convergence
g TAdaet 1000 |
L HEE

l2DL: Prof Dai

https://github.com/Jaewan-Yun/optimizer-visualization

Jacoblan and Hessian

Derivative fR R d];(x)
X

| of(x) af(x)

Gradient fiR™ >R Vf(x) € R V. f= (g}: gxz >
of,
Jacobian f:R®>R"] e RWX™]:(ai@)
i /i

| of (x)

Hessian fiR™ > R H € RM*Xm H:(a;axxj)

Lj

second derivatives

Newton's Method

e Approximate our function by a second-order Taylor
series expansion

1
L(0) = L(By) + (0 —0,)"VyL(6,) + 5(9 —60y)"H(O — 0,)

\

First derivative Second derivative (curvature)

dL(@)

5 | g = & 0*=60,—H1V,L(0)

At optimum:

More info:
https.//enwikipedia.org/wiki/Taylor_series

https://en.wikipedia.org/wiki/Taylor_series

Newton's Method

 [teratively step to minimum of parabolic fit,

X+l = 9K — H=1V,L(0,)

;

We got rid of the learning ratel

SGD Ori1 =0, —aVL(0y,%x; ,y;)

Newton's Method

« Differentiate and equate to zero

9*

Parameters of a
network (millions)

n

= 00 - H_1|79L(9)

Number of
clements in the
Hesslan

n2

Update step

Computational
complexity of inversion
per iteration

O(n?)

Newton's Method

o Gradient Descent (green)

« Newton's method exploits
the curvature to take a
more direct route

%o

Source: https//en.wikipedia.org/wiki/Newton%27s_method_in_optimization

https://en.wikipedia.org/wiki/Newton's_method_in_optimization

Newton's Method

J(8) = (y — X0)" (y — X8)

4)

Can you apply Newton's
method for linear regression?
What do you get as a result?

\. J

2DL: Prof Dal

BFGS and L-BFGS

Sroyden-Fletcher-Goldfarb-Shanno algorithm
Belongs to the family of quasi-Newton methods
Have an approximation of the inverse of the Hessian

0" =0, - H 4r,L(0)

BFGS O(n®)
Limited memory: L-BFGS O(n)

Gauss-Newton

X1 = X — He Q) 7HVf ()
— ‘true’ 2"¢ derivatives are often hard to obtain (e.q.,
numerics)

— Hf ~ 2JiJr

—or non-linear least sgureas, Gauss-Newton (GN)
X1 = Xk — [2JF ()" Jr Q) 17TV F (i)

Solve linear system (again, inverting a matrix is
unstaple):

2(]F(xk)T]F(xk))l(xk — 'xk+1) = Vf(xk)

Solve for delta vector

L evenberg

« [evenberg Tikhorov
— ‘damped’ version of Gauss-Newton: regularization

UrCo) Jr(a) HA 1) (g — Xp41) = Vf(x)

— ‘Interpolation” between Gauss-Newton (small 1) and Gradient
Descent (large)

— The damping factor 4 Is adjusted in each iteration ensuring:

fxk) > f(xk+1)

 If the equation is not fulfilled increase 1
¢ — frust region

Levenberg-Marquardt

e [evenberg-Marqguardt (LM)

UrCa) ' Jr G + 4 - diag Jr Co) ' Jr(x1))) - (e — Xiee1)
= Vi (x)

— Instead of a plain Gradient Descent for large A, scale each
component of the gradient according to the curvature.

« Avolds slow convergence in components with a small
gradient

Which, What, and When?

o Standard Adam
« Fallback option: SGD with momentum

« Newton, L-BFGS, GN, LM only If yvou can do full
patch updates (doesn't work well for minibatches)

\

|
This practically never happens for DL
Theoretically, it would be nice though due to fast
convergence

General Optimization

« Linear Systems (Ax - b)
— LU, QR Cholesky, Jacobi, Gauss-Seldel, CG, PCG, etc.

« Non-linear differentiable problems:
— Gradient Descent, SGD «— first order
— Newton, Gauss-Newton, LM, (L) BFGS « second order

e Others

— Genetic algorithms, MCMC, Metropolis-Hastings, grapn
cut methods..

— Constrained and non-smooth problems (Lagrange,
ADMM, primal-dual, proximal methods, etc)

General Optimization - Remember

Think about your problem and optimization at hand
SGD Is specifically designed for minibatch
When you can, use 2"¢ order method — it's just faster

GD or SGD I1s not a way to solve a linear system!

Next Lecture

e [nIsweek

— Check exercises
— Check office hours ©

« Next lecture
— Training Neural networks

Some References to SGD Updates

« Goodfellow et al. 'Deep Learning' (2010),
— Chapter 8 Optimization
« Bishop "Pattern Recognition and Machine Learning’
(2000).
— Chapter 5.2 Network training (gradient descent)
— Chapter 54 The Hessian Matrix (second order methods)
e Nttps//ruderio/optimizing-gradient-descent/index ntml
« PyTorch Documetation (with further readings)
— https.//pytorch.org/docs/stable/optim.ntml

https://ruder.io/optimizing-gradient-descent/index.html
https://pytorch.org/docs/stable/optim.html

