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Binary Classification: Sigmoid

o(x,0) =

1 + e~ 20

Can be
interpreted as

a probability
p(y =1|x,0)




Multiclass Classification: Softmax

EXD franing pairs [x;; yil.
e SOftmax x; ERP, y, €{1,2..C}
- ) oSYi y; label (true class)
j x', @ — = —
Z; };l btt f ZICC‘=1 eSk ZJ](é:l exiek Parameters:
ropanility O | ®=I[6,,0,,..0
the true class normalize 61,62 cl

C number of classes
s score of the class

1. Exponential operation: make sure probability>0
2. Normalization: make sure probabilities sum up to 1.



Sigmoid Activation

1
1+ e—S

a(s) =

Saturated neurons kill
the gradient flow




Rectified Linear Units (Rel_U)

X Dead Rel U
A
‘. L arge and
What happens If a | consistent
~relU outputs zero? gradients /
—1|0.0 —}:.5 —5|.D —2|.5 Gt.'l(.'l 2.|5 5.|0 7.I5 lUII.O v
/Fast convergence /Does Not saturate

[Krizhevsky et al. NeurlPS 2012] ImageNet Classification with Deep Convolutional Neural Networks
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Xavier/Kaming Initialization

¢ How to ensure the variance of the output Is the same
as the input?

(nVar(w)Var(x)) ReLU Kills half of the activations
\ ) -> adjust var by a factor of 2

4
Var(w) = —

'
=1

Var(w) = %J
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Data Pre-Processing

original data zero-centered data normalized data
0 10 - 0
.4
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For iImages subtract the mean image (AlexNet) or per-channel mean (VGG-Net)
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Data Augmentation

« A classifier has to be invariant to a wide variety of
fransformations



Google e o JRONECY :

All Images Videos News Shopping More Settings Tools SafeSearch ~

Ay




Data Augmentation

« A classifier has to be invariant to a wide variety of
fransformations

« Helping the classifier: synthesize data simulating
olausible transformations



Data Augmentanon

a. No augmentation

224x224

b. Flip augmentation (= :

224x224

-d
c. Crop+Flip augmentation

224x224

+ flips

12Dl Prof. Dai [Krizhevsky et al., NIPS12] ImageNet



Data Augmentation: Brightness

« Random brightness and contrast changes

[2DL: Prof. Dai [Krizhevsky et al, NIPS12] ImageNet 17



Data Augmentation: Random Crops

e [raining: random crops
— Pick a random L in [256,480]
— Resize training iImage, short side L
— Randomly sample crops of 224x224

e T[esting fixed set of crops
— Resize image at N scales
— 10 fixed crops of 224x224: (4 corners + 1 center ) x 2 flips

2D Prof Dai [Krizhevsky et al, NIPS'12] ImageNet 15



Data Augmentation: Advanced

Magnitude: 9

Original ShearX

Magnitude: 17

ShearX AutoContrast

Magnitude: 28

AutoContrast

Original ShearX

Cubuk et al.,, RandAugment, CVPRW 2020
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Sample strength
é_

Sample augmentation
and apply it

Input image

il

Algorithm 1 TrivialAugment Procedure
1: procedure TA(x: image)

2: Sample an augmentation a from 4
3 Sample a strength m from {0, ..., 30}
4: Return a(x, m)

5. end procedure

Muller et al., Trivial Augment, ICCV 2021



Data Augmentation

« \When comparing two networks make sure to use the
same data augmentation!

« Consider data augmentation a part of your network
design



Augmentation - Practical Considerations

« Augmentations should not distort the labels (eg., ©
VS Q)

« Memory vs speed: on-the-fly vs pre-computed

e [est-time augmentation: generated multiple
augmentations of an input iImage and aggregate
model predictions (more robustness)



Advanced
Regularization




2 regularization, also (wrongly) called weight
decay

« [ 2regularization

@k—l—l @k — EV@f @k) )\@k

N\

L earning rate Gradient  Gradient of L2-regularization

« Penalizes large welignts
* |Improves generalization
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2 regularization, also (wrongly) called weight
decay

« Welght decay regularization

Ori1 = (1 — )\)@k — OéV@f(@k)

Learning rate of weight earning rate of the
decay optimizer

« Equivalent to L2 regularization in GD, but not In
Adam

Loshchilov and Hutter, Decoupled Weight Decay
Regularization, ICLR 2019
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Bagging and Ensemble Methods

e [rain multiple models and average their results

e E£g., use adifferent algorithm for optimization or
change the objective function / loss function

o |f errors are uncorrelated, the expected combined
error will decrease linearly with the ensemble size
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Bagging: uses k different datasets (or SGD/Init noise

Training Set 2 Training Set 3

Training Set 1

Image Source: [Srivastava et al., JMLR14] Dropout



-nsembling Variants

« Avold training multiple different models
« Different checkpoints as ensemble members

« Ensemble via subnetworks
— Train one big network that acts as an ensemble

— E.g., multiple inputs -> multiple outputs (MIMO)

» Single shared network that acts as ensemble (different
nputs)



Dropout



Dropout

v 50%)

il

tvpica

Disable a random set of neurons (

/5

Ay,
( ¥ .‘:..._
\

(b) After applying dropout.

(a) Standard Neural Net

[Srivastava et al., JMLR'14] Dropout



Dropout: Intuition

» Using half the network - half capacity ——
eaundaar

representations

Furry \s\

Has two Ve |
eyes /‘G/
HaS a tall / = ‘ N
Has paws /Q/

Has two ears

o [Srivastava et al., JMLR14] Dropout



Dropout: Intuition

« Using half the network - half capacity
— Redundant representations
— Base your scores on more features

o« Consider It as a model ensemble

rof Da [Srivastava et al., JMLR'14] Dropout



Dropout: Intuition

e WO Mmodelsin one

2DL: Prof. Dai [Srivastava et al., JMLR14] Dropout
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Dropout: Intuition

o Using half the network - half capacity
— Redundant representations
— Base your scores on more features

o Consider it as two models In one

— Training a large ensemble of models, each on different
set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

>rof, Da [Srivastava et al., JMLR'14] Dropout



Dropout: Test Time

o All neurons are 'turned on’ - no dropout

Conditions at train and test

t[ime are not the same

Py Torch: modeltrain) and model.eval()

( X Mw .
w./ 44 \ 44

0»0 “» ,noo &

OP bﬁ. ‘,OP bQ.
‘ 4" 151 4"

[Srivastava et al., JMLR'14] Dropout



Dropout: Test Time Dropout

probability
¢ T@St Z = (lel + szz) . p p=20.5

e [ramn Q

Welight scaling
inference rule

>DL: Prof. Da [Srivastava et al., JMLR14] Dropout



Dropout: Before

—fficient bagging method with parameter sharing
Try it!

Dropout reduces the effective capacity of a model,
out needs more training time

—fficient regularization method, can be used with L2

[Srivastava et al., JMLR'14] Dropout



Dropout: Nowadays

Usually does not work well when combined with
patch-norm:

Training takes a bit longer, usually 1.5x%

But, can be used for uncertainty estimation.
Monte Carlo dropout (Yarin Gal and Zoubin
Ghanhramani series of papers)



Monte Carlo Dropout

Neural networks are massively overconfident
We can use dropout to make the softmax
orobabilities more calibrated

Training: use dropout with a low p (01 0r 0.2).
inference, run the same image multiple times (25-
100), and average the results.

Gal et al, Bayesian Convolutional Neural Networks with Bernoulll
Approximate Variational Inference, ICLRW 2015

Gal and Ghahramani, Dropout as a Bayesian approximation, ICML 2016
Gal et al,, Deep Bayesian Active Learning with Image Data, ICML 2017
Gal, Uncertainty in Deep Learning, PhD thesis 2017
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Batch Normalization:

TUTi

ucing Internal Cova
Shift

rlate

What is internal covariate shift, by the way?



Our Goal

All we want Is that our activations do not die out

X



Batch Normalization

o Wish: Unit Gaussian activations (in our example)
e Solution: letsdo it

D - num of features Mean of your mini-batch
Y111 | examples over feature k
)
O %) (é
g 200 — X\ — E[x ]
il JVar[x(]
-

-

I
R

feature 1 feature k

[loffe and Szegedy, PMLR'15] Batch Normalization



Batch Normalization

* [N each dimension of the features, you have a unit
gaussian (in our example)

N = mini-batch size

D=n

um of features

1

feature1 .

feature k ..

Mean of your mini-batch
examples over feature k

/

~(k) xU — E[x(k)]
X =

S/ JVar[x(]

Unit Gaussian

[loffe and Szegedy, PMLR'15] Batch Normalization



Batch Normalization

* [N each dimension of the features, you have a unit
gaussian (in our example)

« For NN Iin general, BN normalizes the mean and
variance of the inputs to your activation functions

lloffe and Szegedy, PMLR15] Batch Normalization



BN Layer

« A layerto be applied after Fully
Connected (or Convolutional) layers and
pefore non-linear activation functions

FC

!

BN

!

tanh

l

FC

!

BN

I

tanh

l

[loffe and Szegedy, PMLR'15] Batch Normalization




Batch Normalization

e 1 Normalize

(k) _ (k)
_ X E[x ] = Differentiable function so we

2K —
\/Var[x(k)] can backprop through it..

« 2 Allow the network to change the range

(k) — NG = [Nese parameters will be
Yo = x optimized during backprop

[loffe and Szegedy, PMLR'15] Batch Normalization



Batch Normalization

e 1 Normalize

The network can
x() — E[x(k)] learn to undo the
normalization

2K —
JVar[x®)]

« 2 Allow the network to change the
range B = E[x)]

o < 4

Dackprop

[loffe and Szegedy, PMLR'15] Batch Normalization
rof. Da 46



Batch Normalization

« Okto treat dimensions separately?
Shown empirically that even if features are not
correlated, convergence is still faster with this
method

lloffe and Szegedy, PMLR'15] Batch Normalization



BN: Train vs Test

e [ralintime: mean and variance Is taken over the mini-

Datch
(k) _
xR — X (@'
Var[x(®)]

o Test-time what happens If we can Just process one
mage at a time”?
— No chance to compute a meaningful mean and variance

lloffe and Szegedy, PMLR'15] Batch Normalization



BN: Train vs Test

Training: Compute mean and variance from mini-batch
1.2.3.

Testing: Compute mean and variance by running an

exponentially welghted averaged across training mini-
patches:

Varrunning = Em * Varrunning + (1 - Em) * Varminibatch

Hrunning = Em * Urunning + (1 _ Em) * Uminibatch

Bm: Momentum (hyperparameter)
lloffe and Szegedy, PMLR'15] Batch Normalization



BN: What do you get?

« Very deep nets are much easier to train, more stable
gradients

e A much larger range of hyperparameters works
similarly when using BN

lloffe and Szegedy, PMLR15] Batch Normalization



BN: A Milestone

-AI.exNe'r —
40 - ngr‘FeaT PY w/o BN
e w/BN
35=
o‘: Inception
5 30- g
] @
T VGG _
F 25- .BN-IncepTion
ResNet
@
20 = ® ResNeXt gENet
iIncep'rion—ResNe‘r. .. Amoeba
1 1 [ ] 1 [] NASNeT []
2013 2014 2015 2016 2017 2018
Year

[Wuand He, ECCV'18] Group Normalization



BN: Drawbacks

36, val error
—+Batch Norm
32
28
24 ¢
32 16 8 4 2
batch size

[Wuand He, ECCV'18] Group Normalization



Other Normalizations

val error

36
—+Batch Norm
-o-Group Norm
32
28 -
24 @ ﬁ/’ o o —O
32 16 8 4 2

batch size

[Wuand He, ECCV'18] Group Normalization



Other Normalizations

Image size

Batch Norm

Number of elements in the batch

Number of channels

[Wuand He, ECCV'18] Group Normalization

rof
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Width

What do we know so far?

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

A ':J
P S S LA
i A

-~
Ty

:‘{\‘\\{\ output layer

A 4



What do we know so far?

Concept of a Neuron

2D Prof. Dal



What do we know so far?

Activation Functions (non-lLinearities)

1
(1+e=%) |

« Sigmoid:a(x) =

104
08 f
oA
0.2

« TanH:tanh(x)

* RelU:max(0,x)

+ Leaky Rel.U:max(0.1x, x) .

-100 -7, =25 ofo 25 5.0 75 100



What do we know so far?

Backpropagation

W 2:00

1.00 /" —1.0C /" \ 037 A( > 1.37 < > 0.73
020 “_/—020 “__/ 053 —0.53 1.00

0.20

12DL: Prof. Dal



What do we know so far?

SGD Variations (Momentum, etc.)

2D Prof. Dal



What do we know so far?

Data Augmentation Batch-Norm
k k
a. No augmentation Q(k) _ x( ) —_ E[x( )]
\‘ JVar[x®)]

Dropout

Welght Initialization
(e.g., Kaiming)

#400 -0 — -

Welght Regularization
eg.L?reg R*W)=3N, w}

rof. Da 61



Why not simply more layers?

Neural nets with at least one hidden layer are universal function
approximators,

But generalization is another issue.

Why not just go deeper and get better?
— No structurell
— Itisjust brute force!
— Optimization becomes hard
— Performance plateaus / drops!

We need morel More means CNINs, RNINs, and Transformers.



Useful References (Recently Released)

« Foundations of Computer Vision (2024; Torralba,
Isola, Freeman)

— Foundational concepts of computer vision with a
machine learning perspective

— Free online at: https.//visionbook mit.edu/

? Foundations * . -
= of Computer Vision g

d

s - " =I
qr“ I rn ) :"-
oy ? et
K s
H! % =
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See you next week!



