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Lecture 7 Recap

2



I2DL: Prof. Dai

Binary Classification: Sigmoid
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0

Can be 
interpreted as 
a probability

1
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Multiclass Classification: Softmax
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• Softmax
training pairs 𝒙𝑖; 𝑦𝑖 , 
𝒙𝑖 ∈ ℝ𝐷, 𝑦𝑖 ∈ 1,2…𝐶
𝑦𝑖 : label (true class)

Parameters: 
𝚯 = [𝜽1, 𝜽2, … , 𝜽𝐶]

𝑝 𝑦𝑖 𝒙𝒊, Θ =
𝑒𝑠𝑦𝑖

σ𝑘=1
𝐶 𝑒𝑠𝑘

=
𝑒𝒙𝑖𝜽𝑦𝑖

σ𝑘=1
𝐶 𝑒𝒙𝑖𝜽𝑘

Exp

normalize
C : number of classes
s : score of the class

Probability of 
the true class

1. Exponential operation: make sure probability>0  
2. Normalization: make sure probabilities sum up to 1.
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Sigmoid Activation
Forward

5

Saturated neurons kill 
the gradient flow
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Rectified Linear Units (ReLU)
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Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU

[Krizhevsky et al. NeurIPS 2012] ImageNet Classification with Deep Convolutional Neural Networks
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Xavier/Kaiming Initialization
• How to ensure the variance of the output is the same 

as the input?
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ReLU Kills half of the activations
-> adjust var by a factor of 2
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Lecture 8
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Data Augmentation
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Data Pre-Processing
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For images subtract the mean image (AlexNet) or per-channel mean (VGG-Net)
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Data Augmentation
• A classifier has to be invariant to a wide variety of 

transformations
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Pose                     Appearance                   Illumination
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Data Augmentation

• A classifier has to be invariant to a wide variety of 
transformations

• Helping the classifier: synthesize data simulating 
plausible transformations

13
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Data Augmentation

14[Krizhevsky et al., NIPS’12] ImageNet
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Data Augmentation: Brightness
• Random brightness and contrast changes

15[Krizhevsky et al., NIPS’12] ImageNet
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Data Augmentation: Random Crops
• Training: random crops

– Pick a random L in [256,480]
– Resize training image, short side L
– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales
– 10 fixed crops of 224x224: (4 corners + 1 center ) × 2 flips

16[Krizhevsky et al., NIPS’12] ImageNet
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Data Augmentation: Advanced 

17

Muller et al., Trivial Augment, ICCV 2021Cubuk et al., RandAugment, CVPRW 2020
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Data Augmentation

• When comparing two networks make sure to use the 
same data augmentation!

• Consider data augmentation a part of your network 
design

18
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Augmentation – Practical Considerations

• Augmentations should not distort the labels (e.g., ‘6’ 
vs ‘9’)

• Memory vs speed: on-the-fly vs pre-computed

• Test-time augmentation: generated multiple 
augmentations of an input image and aggregate 
model predictions (more robustness)

19
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Advanced 
Regularization
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L2 regularization, also (wrongly) called weight 
decay

• L2 regularization

• Penalizes large weights
• Improves generalization

21

Learning rate Gradient Gradient of L2-regularization
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L2 regularization, also (wrongly) called weight 
decay

• Weight decay regularization

• Equivalent to L2 regularization in GD, but not in 
Adam.

22

Learning rate of weight 
decay

Learning rate of the 
optimizer

Loshchilov and Hutter, Decoupled Weight Decay 
Regularization, ICLR 2019
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Early Stopping

23

Overfitting
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Bagging and Ensemble Methods 
• Train multiple models and average their results

• E.g., use a different algorithm for optimization or 
change the objective function / loss function.

• If errors are uncorrelated, the expected combined 
error will decrease linearly with the ensemble size

24
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Bagging and Ensemble Methods 
• Bagging: uses k different datasets (or SGD/init noise)

25

Training Set 1 Training Set 2 Training Set 3

Image Source: [Srivastava et al., JMLR’14] Dropout
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Ensembling Variants
• Avoid training multiple different models

• Different checkpoints as ensemble members

• Ensemble via subnetworks
– Train one big network that acts as an ensemble
– E.g., multiple inputs -> multiple outputs (MIMO)

• Single shared network that acts as ensemble (different 
inputs)

26
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Dropout

27
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Dropout
• Disable a random set of neurons (typically 50%)

28[Srivastava et al., JMLR’14] Dropout

F
o
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ard
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Dropout: Intuition
• Using half the network = half capacity

29

Furry

Has two 
eyes

Has a tail

Has paws

Has two ears

Redundant 
representations

[Srivastava et al., JMLR’14] Dropout



I2DL: Prof. Dai

Dropout: Intuition
• Using half the network = half capacity

– Redundant representations
– Base your scores on more features

• Consider it as a model ensemble

30[Srivastava et al., JMLR’14] Dropout
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Dropout: Intuition
• Two models in one

31

Model 1

Model 2

[Srivastava et al., JMLR’14] Dropout
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Dropout: Intuition
• Using half the network = half capacity

– Redundant representations
– Base your scores on more features

• Consider it as two models in one
– Training a large ensemble of models, each on different 

set of data (mini-batch) and with SHARED parameters

32

Reducing co-adaptation between neurons

[Srivastava et al., JMLR’14] Dropout
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Dropout: Test Time
• All neurons are “turned on” – no dropout

33[Srivastava et al., JMLR’14] Dropout

Conditions at train and test 
time are not the same

PyTorch: model.train() and model.eval()
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Dropout: Test Time

34[Srivastava et al., JMLR’14] Dropout

• Test:

• Train:

Weight scaling 
inference rule
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Dropout: Before
• Efficient bagging method with parameter sharing

• Try it!

• Dropout reduces the effective capacity of a model, 
but needs more training time

• Efficient regularization method, can be used with L2

35[Srivastava et al., JMLR’14] Dropout
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Dropout: Nowadays
• Usually does not work well when combined with 

batch-norm.
• Training takes a bit longer, usually 1.5x
• But, can be used for uncertainty estimation.
• Monte Carlo dropout (Yarin Gal and Zoubin 

Ghahramani series of papers).

36
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Monte Carlo Dropout
• Neural networks are massively overconfident.
• We can use dropout to make the softmax 

probabilities more calibrated.
• Training: use dropout with a low p (0.1 or 0.2).
• Inference, run the same image multiple times (25-

100), and average the results. 

37

Gal et al., Bayesian Convolutional Neural Networks with Bernoulli 
Approximate Variational Inference, ICLRW 2015
Gal and Ghahramani, Dropout as a Bayesian approximation, ICML 2016
Gal et al., Deep Bayesian Active Learning with Image Data, ICML 2017
Gal, Uncertainty in Deep Learning, PhD thesis 2017
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Batch Normalization: 
Reducing Internal Covariate 

Shift

38



I2DL: Prof. Dai

Batch Normalization: 
Reducing Internal Covariate 

Shift

What is internal covariate shift, by the way?

39
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Our Goal
• All we want is that our activations do not die out

40
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Batch Normalization
• Wish: Unit Gaussian activations (in our example)
• Solution: let’s do it

41

D = num of features

N
 =
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Mean of your mini-batch 
examples over feature k

feature 1   …      feature k … 
[Ioffe and Szegedy, PMLR’15] Batch Normalization
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Batch Normalization
• In each dimension of the features, you have a unit 

gaussian (in our example)
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Mean of your mini-batch 
examples over feature k

feature 1   …      feature k … 

D = num of features

N
 =
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in
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Unit Gaussian

[Ioffe and Szegedy, PMLR’15] Batch Normalization



I2DL: Prof. Dai

Batch Normalization
• In each dimension of the features, you have a unit 

gaussian (in our example)

• For NN in general, BN normalizes the mean and 
variance of the inputs to your activation functions

43
[Ioffe and Szegedy, PMLR’15] Batch Normalization
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BN Layer
• A layer to be applied after Fully 

Connected (or Convolutional) layers and 
before non-linear activation functions

44
[Ioffe and Szegedy, PMLR’15] Batch Normalization
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Batch Normalization
• 1. Normalize

• 2. Allow the network to change the range

45

These parameters will be 
optimized during backprop

Differentiable function so we 
can backprop through it….

[Ioffe and Szegedy, PMLR’15] Batch Normalization
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Batch Normalization
• 1. Normalize

• 2. Allow the network to change the 
range

46

backprop

The network can
learn to undo the 

normalization

[Ioffe and Szegedy, PMLR’15] Batch Normalization
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Batch Normalization
• Ok to treat dimensions separately? 

Shown empirically that even if features are not 
correlated, convergence is still faster with this 
method

47
[Ioffe and Szegedy, PMLR’15] Batch Normalization
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BN: Train vs Test
• Train time: mean and variance is taken over the mini-

batch

• Test-time: what happens if we can just process one 
image at a time?
– No chance to compute a meaningful mean and variance

48
[Ioffe and Szegedy, PMLR’15] Batch Normalization
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BN: Train vs Test
Training: Compute mean and variance from mini-batch 
1,2,3 …

Testing: Compute mean and variance by running an 
exponentially weighted averaged across training mini-
batches: 

49
[Ioffe and Szegedy, PMLR’15] Batch Normalization
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BN: What do you get?
• Very deep nets are much easier to train, more stable 

gradients

• A much larger range of hyperparameters works 
similarly when using BN

50
[Ioffe and Szegedy, PMLR’15] Batch Normalization
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BN: A Milestone

51
[Wu and He, ECCV’18] Group Normalization
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BN: Drawbacks

52
[Wu and He, ECCV’18] Group Normalization
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Other Normalizations

53
[Wu and He, ECCV’18] Group Normalization
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Other Normalizations
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Image size

Number of channels

Number of elements in the batch

[Wu and He, ECCV’18] Group Normalization
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What We Know
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What do we know so far?

56

W
id

th

Depth
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What do we know so far?

57

Concept of a ‘Neuron’
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What do we know so far?
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Activation Functions (non-linearities)
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What do we know so far?

59

Backpropagation
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What do we know so far?

60

SGD Variations (Momentum, etc.)
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What do we know so far?

61

Dropout

Batch-Norm

Weight Regularization

Data Augmentation

Weight Initialization
(e.g., Kaiming)
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Why not simply more layers?
• Neural nets with at least one hidden layer are universal function 

approximators.

• But generalization is another issue.

• Why not just go deeper and get better?
– No structure!!
– It is just brute force!
– Optimization becomes hard
– Performance plateaus / drops!

• We need more! More means CNNs, RNNs, and Transformers.

62
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Useful References (Recently Released)

• Foundations of Computer Vision (2024; Torralba, 
Isola, Freeman)
– Foundational concepts of computer vision with a 

machine learning perspective
– Free online at: https://visionbook.mit.edu/

63
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• Goodfellow et al. “Deep Learning” (2016), 

– Chapter 6: Deep Feedforward Networks

• Bishop “Pattern Recognition and Machine Learning” (2006), 
– Chapter 5.5: Regularization in Network Nets

• http://cs231n.github.io/neural-networks-1/

• http://cs231n.github.io/neural-networks-2/

• http://cs231n.github.io/neural-networks-3/
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See you next week!
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