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Exercise 10: Semantic Segmentation
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Today‘s Outline
• Exercise 09: Example Solutions
• Exercise 10: Semantic Segmentation

– Task & Loss Function
– Architecture and Upsampling
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Exercise 9: Solutions
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Facial Keypoints
(1, 96, 96) grayscale image

Score: 1/(2*MSE)

Threshold: Score of 100
(⬄ MSE < 0.005)
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Leaderboard
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MSE 0.00032
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Leaderboard (earlier semester)

MSE 0.00053
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Case Study: Model 
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Classic ConvNet architecture:
• Feature extraction
• Classification
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Case Study: Model Summary 

8

(9x9x128 = 10368)
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Case Study: Smaller Linear Layer?
1. Convolutional layer to reduce 

size to 1x1
– Here: 9x9 kernel, 128 filters, no padding

=> 1x1x128 = 128
2. Global Average Pooling (GAP)

– Here: 9x9 kernel => 128
– Disadvantage: lose spatial relations

3. Flatten
– Solutions: first use 1x1 convolutions
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Extration Pooling   FC
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Case Study: With 1x1 Conv
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Next steps:
Make deeper and use residual 
connection to make it train
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Case Study: Hyperparameters
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• Default learning rate

• Experiment with batch normalization / Dropout

• Forms of ReLU activations (PReLu, ELU)

• Appropriate weight initialization
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Exercise 10
Semantic 

Segmentation
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Semantic Segmentation

1
3

Input:
(3xWxH) RGB image

Output:
(23xWxH) segmentation 
map with scores for every 
class in every pixelCow

Cow

Grass

Mountain
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Semantic Segmentation Labels

14

“void“ for unlabelled pixels
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Metrics: Loss Function
• Averaged per pixel cross-entropy loss
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Metrics: Accuracy
• Only consider pixels which are not „void“
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Model Architecture
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Semantic Segmentation Task
• Input shape: (N, num_channels, H, W)

Output shape: (N, num_classed, H, W)
• We want to:

– Maintain dimensionality (H, W)
– Get features at different spatial resolutions
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Edges Textures Parts Objects

Image source: 
https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/
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Naive Solution
• Keep dimensionality constant throughout the network
• Use increasing filter sizes

• Problem:
– Increased memory consumption

• Filter size would be the same
e.g., 128 filters a (64x3x3) -> 73k params

• But we have to save inputs and outputs for every layer
e.g., 128 filters a (64xWxH) -> millions of params!

19Image source: towardsdatascience.com – Divyanshu Mishra



I2DL: Prof. Dai

Excursion: Receptive Field (RF)
• Region in input space a 

feature in a CNN is looking at
• E.g., after 2 (5x5) convolutions 

with stride 1 we have a 
receptive field of 9x9
(RF after first conv: 5
 RF after second conv: 5+4)

20Image source: medium.com – Dang Ha The Hien
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Coming from Classification
• Use strided convolutions and pooling to increase the 

receptive field
• Upsample result to input resolution
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Better Solution
• Slowly reduce size -> slowly increase size 

– Pooling -> Upsampling
– Strided convolution -> Transposed convolution

• Combine with normal convolutions, bn, dropout, etc.

22Image source: 
https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694
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Transposed Convolutions
•  

23Image source: towardsdatascience.com – Divyanshu Mishra
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Are transpose convolutions superior?
• Short answer: no, not always
• Long answer: possible checkerboard artifacts for 

general image generation, see 
https://distill.pub/2016/deconv-checkerboard/

• My personal go-to:
– Regular upsampling, followed by a convolution layer
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https://distill.pub/2016/deconv-checkerboard/
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How to compete/get results quickly?
• Transfer Learning!

• Possible solutions
– ”The Oldschool” 

• Take pretrained Encoder, set up decoder and only train decoder
• Encoder candidates: AlexNet, MobileNets

– ”The Lazy”
• Take a fully pretrained network and adjust outputs

Encoder   Decoder

C
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Summary
• Monday 14.07.25: Lecture 11 

– Guest Lecture
• Wednesday 16.07.25: Exercise 10 Submission

– Semantic Segmentation: 16.07.25 23:59:59
• Thursday 17.07.25: Tutorial Session 11
• Monday 21.07.25: Lecture 12

– Recurrent Neural Networks
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Good luck &
see you next week 

☺


