

Introduction to Deep Learning (|2DL)

Exercise 4: Simple Classifier

I2DL: Prof. Dai

Today's Outline

- The Pillars of Deep Learning
- Exercise 4: Simple Classifier 🗆 Binary Prediction
 - Housing Dataset
 - Training loop: Forward & Backward pass
- Backpropagation

The Pillars of Deep Learning

The Pillars of Deep Learning

The Pillars of Deep Learning

Exercise 3: Dataset and Dataloader

The Pillars of Deep Learning

Exercise 4: Simple Classifier

Exercise 5: Simple Network

Exercise 6: Hyperparameter Tuning

Model	Solver
Network	Optimizer
Loss/Objective	Validation

Goal: Exercise 4

- Goal: Training process
- Skip: Model Pillar
- Simplified Model: Classifier which is a 1-Layer Neural Network

	Solver
	Ontimizer
	Validation
$\left \right $	

Goals: Exercises 5++

- Ex 3 + 4: Dataloading and Trainings process
- Ex 5++: Expand the exercises to more interesting model architectures

Exercise 4: Simple Classifier

Housing Dataset

- Housing Dataset: Data of ~1400 houses including 81 features like
 Neighborhood, GrLivArea, YearBuilt, etc.
- Simplified model: <u>1 input feature</u> to predict house price label ("expensive" vs "low-prized")

ld	Neighborhood	BidgType	HouseStyle	YearBuilt	YearRemodAdd	RoofStyle	CentralAir	GrLivArea	FullBath	HalfBath	Fireplaces	PoolArea	Fence	SalePrice
1	CollgCr	1Fam	2Story	2003	2003	Gable	Y	1710	2	1	0	0	NA	208500
2	Veenker	1Fam	1Story	1976	1976	Gable	Y	1262	2	0	1	0	NA	181500
3	CollgCr	1Fam	2Story	2001	2002	Gable	Y	1786	2	1	1	0	NA	223500
4	Crawfor	1Fam	2Story	1915	1970	Gable	Y	1717	1	0	1	0	NA	140000
5	NoRidge	1Fam	2Story	2000	2000	Gable	Y	2198	2	1	1	0	NA	250000
6	Mitchel	1Fam	1.5Fin	1993	1995	Gable	Y	1362	1	1	0	0	MnPrv	143000
7	Somerst	1Fam	1Story	2004	2005	Gable	Y	1694	2	0	1	0	NA	307000
8	NWAmes	1Fam	2Story	1973	1973	Gable	Y	2090	2	1	2	0	NA	200000

housing_train

Exercise 4 - Classifying House Prices

3rd Pillar of Deep Learning

Backpropagation

Backpropagation: Overview

Forward pass

Backpropagation: Loss Function

Forward pass

Binary Cross Entropy Loss:

I2DI : Prof. Dai

$$L(y, \hat{y}) = y \cdot \log(\hat{y}) + (1 - y) \cdot \log(1 - \hat{y})$$

15

Backpropagation: Update Step

Forward pass

Optimization with gradient descent: $\theta_{t+1} = \theta_t - \lambda \cdot \nabla_{\theta} L$

I2DL: Prof. Dai

Backpropagation: Summary

- Input: X ∈ ℝ^{N×D+1} representing our data with N samples and D+1 feature dimensions
- Output: Binary labels given by $y \in \mathbb{R}^{N \times 1}$
- Model: Classifier of the form $y = \sigma(X \cdot w)$
- Sigmoid function: $\sigma:\mathbb{R}\to [0,1]^{\text{ with }}\sigma(t)=\frac{1}{1+e^{-t}}$

• Weights of the Classifier: $w = (w_1, w_2, \dots, w_{D+1}) \top \in \mathbb{R}^{D+1}$

Backpropagation: Example

Backpropagation

Forward pass

Input Data X

(Single sample -> N samples)

Backward Pass

• Backward Pass: Derivative of function with respect to weights

$$w = (w_1, w_2, \dots, w_{D+1})$$
 of our Classifier

- Attention: Make sure you understand the dimensions here
- Step 1: Forward + Backward Pass for one sample
- Step 2: Forward + Backward Pass for N samples

Overview Exercise 4

- Two Notebooks
 - Optional: Preprocessing
 - Logistic regression model

Fixed Deadline: May 28, 2025 23:59

- Submission
 - Several implementation tasks in the notebook
 - Submission file creation in Notebook

See you next week 😏