

Introduction to Deep Learning (I2DL)

Exercise 10: Semantic Segmentation

12DI : Prof. Dai

Today's Outline

- Exercise 09: Example Solutions
- Exercise 10: Semantic Segmentation
 - Task & Loss Function
 - Architecture and Upsampling

Exercise 9: Solutions

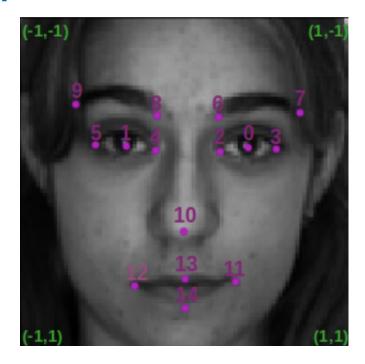
Facial Keypoints

(1, 96, 96) grayscale image

Score: 1/(2*MSE)

Threshold: Score of 100

(⇔ MSE < 0.005)



Leaderboard

#	User	Score
1	u1412	8043.20
2	u0573	MSE 0.000062 1922.17
3	u0120	1431.35
4	u0825	1355.07
5	u0174	1265.81
6	u0341	1192.98
7	u1567	1156.83
8	u0870	1115.39
9	u1129	1099.07
10	u0973	1067.59

Leaderboard

#	User	Score	
1	u1180	1584.89	
2	u1345	1361.77 MSE O.	00032
3	u1605	1246.78	
4	u0497	1180.40	
5	u0225	1157.30	
6	u0318	1153.99	
7	u0798	1132.49	
8	u0088	1093.72	
9	u1479	1093.33	
10	u0832	1002.68	
11	u0462	972.42	
12	u0472	924.34	

12DL: Prof. Dai

Leaderboard (earlier semester)

Leaderboard: Submission 9

Rank	User	Score	Pass
#1	s0672	942.66	1
#2	s0463	940.88	 MSE 0.00053
#3	s0770	792.80	✓
#4	s0303	722.08	✓
#5	s0587	689.02	✓
#6	s0747	656.89	✓
#7	s0555	654.95	✓
#8	s0400	615.63	•
#9	s0322	607.35	1
#10	s0288	602.19	•

12DL: Prof. Da

Leaderboard

Exercise 7

Exercise 8

Exercise 9

Exercise 10

Exercise 6

Exercise 3

Exercise 4

Exercise 5

Exercise 1

User Score u0120 99.00 2 u0787 94.00 3 u1389 92.00 u1068 90.00 4 5 u1595 90.00 6 u1802 89.00 u0169 88.00 8 u1359 88.00 9 u1432 87.00 10 87.00 u1468 12DL: Fron Dai

Case Study: Model

```
self.model = nn.Sequential(
   nn.Conv2d(in channels=1, out channels=32, kernel size=4, stride=1, padding=0),
   nn.ELU(),
   nn.MaxPool2d(kernel size=2, stride=2),
   nn.Dropout(p=0.1),
   nn.Conv2d(in channels=32, out channels=64, kernel size=3, stride=1, padding=0),
   nn.ELU(),
   nn.MaxPool2d(kernel size=2, stride=2),
   nn.Dropout(p=0.2),
   nn.Conv2d(in channels=64, out channels=128, kernel size=2, stride=1, padding=0),
   nn.ELU(),
   nn.MaxPool2d(kernel_size=2, stride=2),
   nn.Dropout(p=0.3),
   nn.Conv2d(in_channels=128, out_channels=256, kernel_size=1, stride=1, padding=0)
   nn.ELU(),
   nn.MaxPool2d(kernel_size=2, stride=2),
   nn.Dropout(p=0.4),
   nn.Flatten(),
   nn.Linear(6400, 689),
   nn.ELU(),
   nn.Dropout(p=0.5),
   nn.Linear(689, 689),
   nn.ELU(),
   nn.Dropout(p=0.6),
   nn.Linear(689, 30)
```

Case Study: Model

```
self.model = nn.Sequential(
    nn.Conv2d(1, 32, (3, 3), stride=1, padding=2),
   # nn.BatchNorm2d(32),
    # nn.Dropout2d(0.2),
   nn.PReLU(),
    nn.MaxPool2d(3),
    nn.Conv2d(32, 64, (3, 3), stride=1, padding=2),
   # nn.BatchNorm2d(64),
    # nn.Dropout2d(),
   nn.PReLU(),
    nn.MaxPool2d(3, stride=2),
    nn.Conv2d(64, 64, (3, 3), stride=1, padding=1),
   # nn.BatchNorm2d(64),
    # nn.Dropout2d(0.3),
   nn.PReLU(),
    nn.MaxPool2d(2, stride=2),
    nn.Conv2d(64, 128, (2, 2), stride=1, padding=1)
   # nn.BatchNorm2d(128),
   # nn.Dropout2d(0.3),
   nn.PReLU(),
```

Classic ConvNet architecture:

- Feature extraction
- Classification

```
Flatten(),
nn.Linear(10368, 256),
# nn.BatchNorm1d(256),
nn.Dropout(0.1),
nn.PReLU(),
nn.Linear(256, 30),
```

Case Study: Model Summary

```
#!pip install torchsummary
import torchsummary
torchsummary.summary(model, (1, 96, 96))
```

Param #	Output Shape	Layer (type)
320	[-1, 32, 98, 98]	Conv2d-1
1	[-1, 32, 98, 98]	PReLU-2
Θ	[-1, 32, 32, 32]	MaxPool2d-3
18,496	[-1, 64, 34, 34]	Conv2d-4
1	[-1, 64, 34, 34]	PReLU-5
Θ	[-1, 64, 16, 16]	MaxPool2d-6
36,928	[-1, 64, 16, 16]	Conv2d-7
1	[-1, 64, 16, 16]	PReLU-8
Θ	[-1, 64, 8, 8]	MaxPool2d-9
32,896	[-1, 128, 9, 9]	Conv2d-10
1	[-1, 128, 9, 9]	PReLU-11
0	[-1, 10368]	Flatten-12
2,654,464	[-1, 256]	Linear-13
Θ	[-1, 256]	Dropout-14
1	[-1, 256]	PReLU-15
7,710	[-1, 30]	Linear-16

```
Total params: 2,750,819
Trainable params: 2,750,819
Non-trainable params: 0

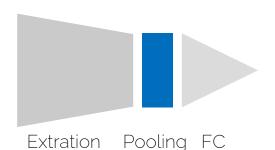
Input size (MB): 0.04
Forward/backward pass size (MB): 6.72
Params size (MB): 10.49
Estimated Total Size (MB): 17.25
```

```
(9\times9\times128 = 10368)
```

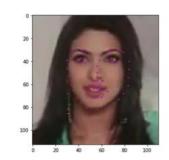
```
Flatten(),
nn.Linear(10368, 256),
# nn.BatchNorm1d(256),
nn.Dropout(0.1),
nn.PReLU(),
nn.Linear(256, 30),
```

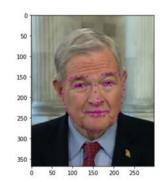
Case Study: Smaller Linear Layer?

- 1. Convolutional layer to reduce size to 1x1
 - Here: 9x9 kernel, 128 filters, no padding1x1x128 = 128



- 2. Global Average Pooling (GAP)
 - Here: 9x9 kernel => 128
 - Disadvantage: lose spatial relations
- 3. Flatten
 - Solutions: first use 1x1 convolutions





Case Study: With 1x1 Conv

```
# After adding 1x1 layers
# nn.Conv2d(128, 16, (1, 1), stride=1, padding=0),
# Flatten(),
# nn.Linear(9*9*16, 256),
torchsummary.summary(model, (1, 96, 96))
```

Param #	Output Shape	Layer (type)	
320	[-1, 32, 98, 98]	Conv2d-1	
1	[-1, 32, 98, 98]	PReLU-2	
Θ	[-1, 32, 32, 32]	MaxPool2d-3	
18,496	[-1, 64, 34, 34]	Conv2d-4	
1	[-1, 64, 34, 34]	PReLU-5	
0	[-1, 64, 16, 16]	MaxPool2d-6	
36,928	[-1, 64, 16, 16]	Conv2d-7	
1	[-1, 64, 16, 16]	PReLU-8	
Θ	[-1, 64, 8, 8]	MaxPool2d-9	
32,896	[-1, 128, 9, 9]	Conv2d-10	
1	[-1, 128, 9, 9]	PReLU-11	
2,064	[-1, 16, 9, 9]	Conv2d-12	
Θ	[-1, 1296]	Flatten-13	
332,032	[-1, 256]	Linear-14	
0	[-1, 256]	Dropout-15	
1	[-1, 256]	PReLU-16	
7,710	[-1, 30]	Linear-17	

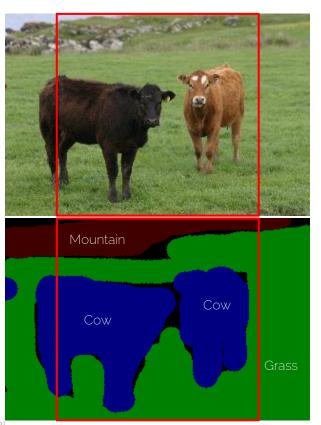
Total params: 430,451 Trainable params: 430,451 Non-trainable params: 0
Input size (MB): 0.04 Forward/backward pass size (MB): 6.66 Params size (MB): 1.64
Estimated Total Size (MB): 8.34

Next steps:

Make deeper and use residual connection to make it train

Exercise 10 Semantic Segmentation

Semantic Segmentation



Input:

(3xWxH) RGB image

Output:

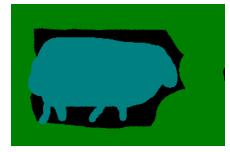
(23xWxH) segmentation map with scores for every class in every pixel

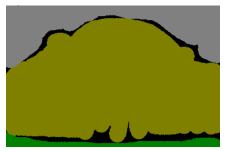
12DL: Prof. Dai

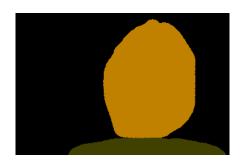
Semantic Segmentation Labels

object class	R	G	В	Colour
void	0	0	0	
building	128	0	0	
grass	0	128	0	
tree	128	128	0	
cow	0	0	128	
horse	128	0	128	
sheep	0	128	128	
sky	128	128	128	
mountain	64	0	0	

"void" for unlabelled pixels







12DL: Prof. Dai

Metrics: Loss Function

Averaged per pixel cross-entropy loss

```
for (inputs, targets) in train_data[0:4]:
    inputs, targets = inputs, targets
    outputs = dummy model(inputs.unsqueeze(0))
    loss = torch.nn.CrossEntropyLoss(ignore_index=-1, reduction='mean')
    losses = loss(outputs, targets.unsqueeze(0))
    print(losses)
```

• **ignore_index** (*int*, *optional*) – Specifies a target value that is ignored and does not contribute to the input gradient. When <code>size_average</code> is <code>True</code>, the loss is averaged over non-ignored targets.

12DI : Prof. Dai

Metrics: Accuracy

Only consider pixels which are not "void"

```
def evaluate model(model):
    test scores = []
    model.eval()
    for inputs, targets in test loader:
        inputs, targets = inputs.to(device), targets.to(device)
        outputs = model.forward(inputs)
         , preds = torch.max(outputs, 1)
        targets mask = targets >= 0
        test scores.append(np.mean((preds == targets)[targets mask].data.cpu().numpy()))
    return np.mean(test scores)
print("Test accuracy: {:.3f}".format(evaluate model(dummy model)))
```


Model Architecture

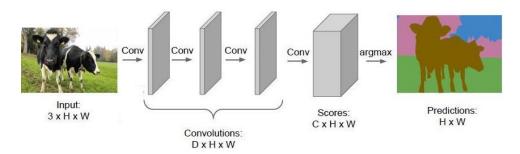
I2DI · Prof Da

Semantic Segmentation Task

- Input shape: (N, num_channels, H, W) Output shape: (N, num_classed, H, W)
- We want to:
 - Maintain dimensionality (H, W)
 - Get features at different spatial resolutions

Naive Solution

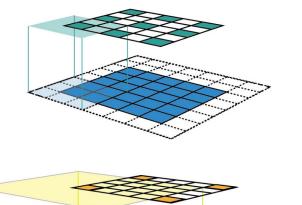
- Keep dimensionality constant throughout the network
- Use increasing filter sizes

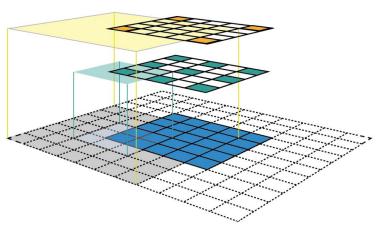


- Problem:
 - Increased memory consumption
 - Filter size would be the same e.g., 128 filters a (64x3x3) -> 73k params
 - But we have to save inputs and outputs for every layer e.g., 128 filters a (64xWxH) -> millions of params!

Excursion: Receptive Field (RF)

- Region in input space a feature in a CNN is looking at
- E.g., after 2 (5x5) convolutions with stride 1 we have a receptive field of 9x9
 (RF after first conv: 5 RF after second conv: 5+4)





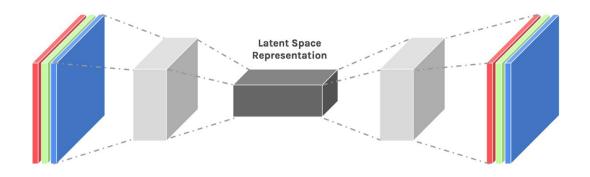
Coming from Classification

- Use strided convolutions and pooling to increase the receptive field
- Upsample result to input resolution

Convolution H × W H/4 × W/4 H/8 × W/8 H/16 × W/16 H/32 × W/32 H × W

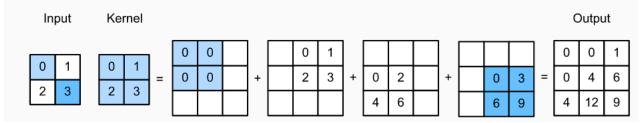
Better Solution

- Slowly reduce size -> slowly increase size
 - Pooling -> Upsampling
 - Strided convolution -> Transposed convolution
- Combine with normal convolutions, bn, dropout, etc.



Transposed Convolutions

Upsampling with learnable parameters



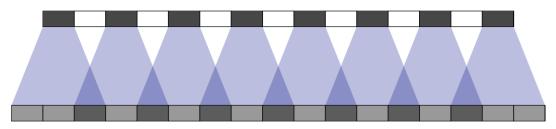
- Output size computation:
 - Regular conv layer: $out = \frac{(in kernel + 2 * pad)}{stride} + 1$
 - Transpose convolution for multiples of 2

$$out = (in - 1) * stride - 2 * pad + kernel$$

(Transpose computation not relevant for the exam, more info here: https://github.com/vdumoulin/conv_arithmetic)

Are transpose convolutions superior?

- Short answer: no, not always
- Long answer: possible checkerboard artifacts for general image generation, see https://distill.pub/2016/deconv-checkerboard/



- My personal go-to:
 - Regular upsampling, followed by a convolution layer

12DL: Prof. Dai

How to compete/get results quickly?

Transfer Learning!

- Possible solutions
 - "The Oldschool"
 - Take pretrained Encoder, set up decoder and only train decoder
 - Encoder candidates: AlexNet, MobileNets
 - The Lazy
 - Take a fully pretrained network and adjust outputs

12DL: Prof. Dai

Good luck & see you next week