
Lecture 10 Recap
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LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height       Number of Filters

3

60k parameters
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AlexNet

• Softmax for 1000 classes
4

[Krizhevsky et al., ANIPS’12] AlexNet
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VGGNet
• Striving for simplicity

– Conv -> Pool -> Conv -> Pool -> Conv -> FC
– Conv=3x3, s=1, same; Maxpool=2x2, s=2

• As we go deeper: Width, Height     Number of Filters
• Called VGG-16: 16 layers that have weights

• Large but simplicity makes it appealing

5

[Simonyan et al., ICLR’15] VGGNet

138M parameters
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Residual Block
• Two layers

6I2DL: Prof. Dai

Linear LinearInput

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1 + 𝑥𝐿−1)

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1)



Inception Layer

7

[Szegedy et al., CVPR’15] GoogleNet
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Lecture 11
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Transfer Learning
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Transfer Learning
• Training your own model can be difficult with limited 

data and other resources
e.g.,
• It is a laborious task to manually annotate your 

own training dataset
• Why not reuse already pre-trained models?
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Transfer Learning

11

P1P1 P2P2

Large dataset Small dataset

Distribution Distribution

Use what has been 
learned for another 

setting
I2DL: Prof. Dai



[Zeiler al., ECCV’14] Visualizing and Understanding Convolutional Networks

Transfer Learning for Images
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Transfer Learning

13

Trained on 
ImageNet

Feature 
extraction

[Donahue et al., ICML’14] DeCAF, 
[Razavian et al., CVPRW’14] CNN Features off-the-shelf 
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Transfer Learning

14

Trained on 
ImageNet

Edges

Simple geometrical shapes (circles, etc)

Parts of an object (wheel, window)

Decision layers

[Donahue et al., ICML’14] DeCAF, 
[Razavian et al., CVPRW’14] CNN Features off-the-shelf 
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Transfer Learning

15

Trained on 
ImageNet

New dataset 
with C classes

TRAIN

FROZEN

[Donahue et al., ICML’14] DeCAF, 
[Razavian et al., CVPRW’14] CNN Features off-the-shelf 
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Transfer Learning

16

If the dataset is big 
enough train more 
layers with a low 

learning rate

TRAIN

FROZEN
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When Transfer Learning Makes Sense

• When task T1 and T2 have the same input (e.g. an 
RGB image)

• When you have more data for task T1 than for task T2

• When the low-level features for T1 could be useful to 
learn T2
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Now you are:
• Ready to perform image classification on any dataset

• Ready to design your own architecture

• Ready to deal with other problems such as semantic 
segmentation (Fully Convolutional Network)
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Representation 
Learning
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Learning Good Features
• Good features are essential for successful machine 

learning

• (Supervised) deep learning depends on training data 
used: input/target labels

• Change in inputs (noise, irregularities, etc) can result 
in drastically different results
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Representation Learning
• Allows for discovery of representations required for 

various tasks

• Deep representation learning: model maps input 𝑋 to 
output 𝑌
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Deep Representation Learning
• Intuitively, deep networks learn multiple levels of 

abstraction
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How to Learn Good Features?

• Determine desired feature invariances

• Teach machines to distinguish between similar and 
dissimilar things

23https://amitness.com/2020/03/illustrated-simclr/
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How to Learn Good Features?

24

[Chen et al., ICML’20] SimCLR, 
https://amitness.com/2020/03/illustrated-simclr/
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Apply to Downstream Tasks

25

[Chen et al., ICML’20] SimCLR, 
https://amitness.com/2020/03/illu

strated-simclr/



Transfer & Representation Learning

• Transfer learning can be done via representation 
learning

• Effectiveness of representation learning often 
demonstrated by transfer learning performance (but 
also other factors, e.g., smoothness of the manifold)

26I2DL: Prof. Dai



Recurrent Neural 
Networks
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Processing Sequences
• Recurrent neural networks process sequence data

• Input/output can be sequences
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RNNs are Flexible

29

Classical neural networks for image classification

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs are Flexible
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Image captioning

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs are Flexible
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Language recognition

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs are Flexible
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Machine translation

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs are Flexible

33

Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs are Flexible

34

Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Basic Structure of an RNN
• Multi-layer RNN

35

Outputs

Inputs

Hidden 
states
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Basic Structure of an RNN
• Multi-layer RNN

36

Outputs

Inputs

Hidden 
states

The hidden state 
will have its own 
internal dynamics

More expressive 
model!
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Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

37

Hidden 
state inputPrevious 

hidden 
state

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡



Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

38

Hidden 
state Parameters to be learned

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡



Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

39

Hidden 
state

Note: non-linearities 
ignored for now

Output

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡



Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

40

Hidden 
state

Same parameters for each 
time step = generalization!

Output

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡



Basic Structure of an RNN
• Unrolling RNNs

41

Same function for the hidden layers

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai



Basic Structure of an RNN
• Unrolling RNNs

42[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai



Basic Structure of an RNN
• Unrolling RNNs as feedforward nets

43

Weights are the same!

I2DL: Prof. Dai



Backprop through an RNN

44I2DL: Prof. Dai

• Unrolling RNNs as feedforward nets

Chain rule

All the way to 𝑡 = 0

Add the derivatives at different times for each weight



Long-term Dependencies

45

I moved to Germany … so I speak German fluently.

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai



Long-term Dependencies
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• Simple recurrence

• Let us forget the input

Same weights are 
multiplied over and over 
again

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0



Long-term Dependencies
• Simple recurrence

47

What happens to small weights?

What happens to large weights?

Vanishing gradient

Exploding gradient

I2DL: Prof. Dai

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0



Long-term Dependencies
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• Simple recurrence

• If 𝜽 admits eigendecomposition

Diagonal of this 
matrix are the 
eigenvalues

Matrix of 
eigenvectors

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

𝜽 = 𝑸𝚲𝑸𝑇



Long-term Dependencies
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• Simple recurrence

• If 𝜽 admits eigendecomposition

• Orthogonal 𝜽 allows us to simplify the recurrence

𝑨𝑡 = 𝑸𝚲𝑡𝑸𝑇𝑨0

𝜽 = 𝑸𝚲𝑸𝑇

𝑨𝑡 = 𝜽𝑡𝑨0



Long-term Dependencies
• Simple recurrence

50

What happens to eigenvalues with 
magnitude less than one?

What happens to eigenvalues with 
magnitude larger than one?

Vanishing gradient

Exploding gradient Gradient 
clipping

I2DL: Prof. Dai

𝑨𝑡 = 𝑸𝚲t𝑸𝑇𝑨0



Long-term Dependencies
• Simple recurrence

51

Let us just make a matrix with eigenvalues = 1

Allow the cell to maintain its “state”

I2DL: Prof. Dai

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0



Vanishing Gradient

52[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0



Vanishing Gradient

53[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑡𝑨0• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

1
?



Long Short Term 
Memory

54

[Hochreiter et al., Neural Computation’97] Long Short-Term Memory
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Long-Short Term Memory Units

55[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Simple RNN has tanh as non-linearity



Long-Short Term Memory Units
LSTM

56[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai



Long-Short Term Memory Units
• Key ingredients 
• Cell = transports the information through the unit

57[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai



Long-Short Term Memory Units
• Key ingredients 
• Cell = transports the information through the unit
• Gate = remove or add information to the cell state

58

Sigmoid

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai



LSTM: Step by Step

59[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

Decides when to 
erase the cell state

Sigmoid = output 
between 0 (forget) 
and 1 (keep)



LSTM: Step by Step

60[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

Decides which 
values will be 
updated

New cell state, 
output from a 
tanh (−1,1)



LSTM: Step by Step
• Element-wise operations

61

Previous 
states

Current 
state

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑪𝑡 = 𝒇𝑡⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡



LSTM: Step by Step

62[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Output gate 𝒉𝑡 = 𝒐𝑡⊙ tanh 𝑪𝑡

Decides which 
values will be 
outputted

Output from a 
tanh (−1, 1)



LSTM: Step by Step

63I2DL: Prof. Dai

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙ tanh 𝑪𝑡



LSTM: Step by Step

64

Learned through 
backpropagation

I2DL: Prof. Dai

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙ tanh 𝑪𝑡



LSTM
• Highway for the gradient to flow

66[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai



LSTM: Dimensions

67

128

128

What operation do I need to do to my input to get 
a 128 vector representation?

128 128 128

When coding an 
LSTM, we have to 
define the size of the 
hidden state

Dimensions need to 
match

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)



LSTM in code 



Attention

73I2DL: Prof. Dai



Attention is all you need
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Attention is all you need

76I2DL: Prof. Dai

~62,000 citations in 
5 years!



Attention vs convolution
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Long-Term Dependencies

78

I moved to Germany … so I speak German fluently.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I2DL: Prof. Dai

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Attention: Intuition

Context

I moved to Germany … so I speak German fluently
79I2DL: Prof. Dai



Attention: Architecture
• A decoder processes 

the information

• Decoders take as 
input:
– Previous decoder 

hidden state
– Previous output
– Attention

D D D

Context

80I2DL: Prof. Dai



Transformers

81I2DL: Prof. Dai



Deep Learning Revolution

82I2DL: Prof. Dai

Deep Learning Deep Learning 2.0

Main idea Convolution Attention

Field invented Computer vision NLP

Started NeurIPS 2012 NeurIPS 2017

Paper AlexNet Transformers

Conquered vision Around 2014-2015 Around 2020-2021

Replaced
(Augmented)

Traditional ML/CV CNNs, RNNs



Transformers

84I2DL: Prof. Dai

Multi-Head 
Attention on the 
“encoder”

Fully connected 
layer

Masked Multi-
Head Attention 
on the “decoder”



Multi-Head Attention

85I2DL: Prof. Dai

Intuition: Take the query Q, find the most similar 
key K, and then find the value V that 
corresponds to the key.

In other words, learn V, K, Q where:
V – here is a bunch of interesting things.
K – here is how we can index some things.
Q – I would like to know this interesting thing.

Loosely connected to Neural Turing Machines 
(Graves et al.).



Attention 𝑄,𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

Multi-Head Attention

86I2DL: Prof. Dai

Multiply queries 
with keys

To train them well, divide by             , “probably” because for 
large values of the key’s dimension, the dot product grows 
large in magnitude, pushing the softmax function into regions 
where it has extremely small gradients. 

Index the values 
via a differentiable 
operator.

Get the values

𝑑𝑘



Multi-Head Attention

87I2DL: Prof. Dai

Q

Adapted from Y. Kilcher



Multi-Head Attention

88I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5



Multi-Head Attention

89I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5



Multi-Head Attention

90I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Essentially, dot product between (<Q,K1>), (<Q,K2>), (<Q,K3>), 
(<Q,K4>), (<Q,K5>). 



softmax
𝑄𝐾𝑇

𝑑𝑘

Multi-Head Attention

91I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values. 
The larger a value is, the higher is its softmax value. 
Can be interpreted as a differentiable soft indexing.



Multi-Head Attention

92I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values. 
The larger a value is, the higher is its softmax value. 
Can be interpreted as a differentiable soft indexing.

softmax
𝑄𝐾𝑇

𝑑𝑘



Multi-Head Attention

93I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Selecting the value V where 
the network needs to attend..softmax

𝑄𝐾𝑇

𝑑𝑘



Transformers – a closer look

96I2DL: Prof. Dai

K parallel 
attention heads. 



Transformers – a closer look

97I2DL: Prof. Dai

Good old fully-
connected 
layers.



Transformers – a closer look

98I2DL: Prof. Dai

N layers of 
attention 
followed by FC



Transformers – a closer look

99I2DL: Prof. Dai

Same as multi-head attention, 
but masked. Ensures that the 
predictions for position i can 
depend only on the known 
outputs at positions less than i.



Transformers – a closer look

100I2DL: Prof. Dai

Multi-headed attention between 
encoder and the decoder.



Transformers – a closer look

101I2DL: Prof. Dai

Projection and prediction.



What is missing from self-attention?

102I2DL: Prof. Dai

• Convolution: a different linear transformation for each 
relative position. Allows you to distinguish what 
information came from where.

• Self-attention: a weighted average.



Transformers – a closer look

103I2DL: Prof. Dai

Uses fixed positional encoding 
based on trigonometric series, in 
order for the model to make use 
of the order of the sequence

dimension

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin
𝑝𝑜𝑠

100002𝑖/𝑑model

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

100002𝑖/𝑑model
)



Transformers – a final look

104I2DL: Prof. Dai



Self-attention: complexity

105I2DL: Prof. Dai

where n is the sequence length, d is the representation dimension, 
k is the convolutional kernel size, and r is the size of the neighborhood.



Self-attention: complexity

106I2DL: Prof. Dai

where n is the sequence length, d is the representation dimension, 
k is the convolutional kernel size, and r is the size of the neighborhood.

Considering that most sentences have a smaller dimension than the representation
dimension (in the paper, it is 512), self-attention is very efficient.



Transformers – training tricks

107I2DL: Prof. Dai

• ADAM optimizer with proportional learning rate:

• Residual dropout
• Label smoothing
• Checkpoint averaging



Transformers - results
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Transformers - summary

109I2DL: Prof. Dai

• Significantly improved SOTA in machine translation
• Launched a new deep-learning revolution in MLP
• Building block of NLP models like BERT (Google) or 

GPT/ChatGPT (OpenAI)
• BERT has been heavily used in Google Search

• And eventually made its way to computer vision (and 
other related fields)



See you next time!

110I2DL: Prof. Dai
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