
Lecture 10 Recap

2I2DL: Prof. Dai

LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height Number of Filters

3

60k parameters

I2DL: Prof. Dai

AlexNet

• Softmax for 1000 classes
4

[Krizhevsky et al., ANIPS’12] AlexNet

I2DL: Prof. Dai

VGGNet
• Striving for simplicity

– Conv -> Pool -> Conv -> Pool -> Conv -> FC
– Conv=3x3, s=1, same; Maxpool=2x2, s=2

• As we go deeper: Width, Height Number of Filters
• Called VGG-16: 16 layers that have weights

• Large but simplicity makes it appealing

5

[Simonyan et al., ICLR’15] VGGNet

138M parameters

I2DL: Prof. Dai

Residual Block
• Two layers

6I2DL: Prof. Dai

Linear LinearInput

𝑥𝐿+1𝑥𝐿−1 𝑥𝐿

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1 + 𝑥𝐿−1)

𝑥𝐿+1 = 𝑓(𝑊𝐿+1𝑥𝐿 + 𝑏𝐿+1)

Inception Layer

7

[Szegedy et al., CVPR’15] GoogleNet

I2DL: Prof. Dai

Lecture 11

8I2DL: Prof. Dai

Transfer Learning

9I2DL: Prof. Dai

Transfer Learning
• Training your own model can be difficult with limited

data and other resources
e.g.,
• It is a laborious task to manually annotate your

own training dataset
• Why not reuse already pre-trained models?

10I2DL: Prof. Dai

Transfer Learning

11

P1P1 P2P2

Large dataset Small dataset

Distribution Distribution

Use what has been
learned for another

setting
I2DL: Prof. Dai

[Zeiler al., ECCV’14] Visualizing and Understanding Convolutional Networks

Transfer Learning for Images

12I2DL: Prof. Dai

Transfer Learning

13

Trained on
ImageNet

Feature
extraction

[Donahue et al., ICML’14] DeCAF,
[Razavian et al., CVPRW’14] CNN Features off-the-shelf

I2DL: Prof. Dai

Transfer Learning

14

Trained on
ImageNet

Edges

Simple geometrical shapes (circles, etc)

Parts of an object (wheel, window)

Decision layers

[Donahue et al., ICML’14] DeCAF,
[Razavian et al., CVPRW’14] CNN Features off-the-shelf

I2DL: Prof. Dai

Transfer Learning

15

Trained on
ImageNet

New dataset
with C classes

TRAIN

FROZEN

[Donahue et al., ICML’14] DeCAF,
[Razavian et al., CVPRW’14] CNN Features off-the-shelf

I2DL: Prof. Dai

Transfer Learning

16

If the dataset is big
enough train more
layers with a low

learning rate

TRAIN

FROZEN

I2DL: Prof. Dai

When Transfer Learning Makes Sense

• When task T1 and T2 have the same input (e.g. an
RGB image)

• When you have more data for task T1 than for task T2

• When the low-level features for T1 could be useful to
learn T2

17I2DL: Prof. Dai

Now you are:
• Ready to perform image classification on any dataset

• Ready to design your own architecture

• Ready to deal with other problems such as semantic
segmentation (Fully Convolutional Network)

18I2DL: Prof. Dai

Representation
Learning

19I2DL: Prof. Dai

Learning Good Features
• Good features are essential for successful machine

learning

• (Supervised) deep learning depends on training data
used: input/target labels

• Change in inputs (noise, irregularities, etc) can result
in drastically different results

20I2DL: Prof. Dai

Representation Learning
• Allows for discovery of representations required for

various tasks

• Deep representation learning: model maps input 𝑋 to
output 𝑌

21I2DL: Prof. Dai

Deep Representation Learning
• Intuitively, deep networks learn multiple levels of

abstraction

22I2DL: Prof. Dai

I2DL: Prof. Dai

How to Learn Good Features?

• Determine desired feature invariances

• Teach machines to distinguish between similar and
dissimilar things

23https://amitness.com/2020/03/illustrated-simclr/

I2DL: Prof. Dai

How to Learn Good Features?

24

[Chen et al., ICML’20] SimCLR,
https://amitness.com/2020/03/illustrated-simclr/

I2DL: Prof. Dai

Apply to Downstream Tasks

25

[Chen et al., ICML’20] SimCLR,
https://amitness.com/2020/03/illu

strated-simclr/

Transfer & Representation Learning

• Transfer learning can be done via representation
learning

• Effectiveness of representation learning often
demonstrated by transfer learning performance (but
also other factors, e.g., smoothness of the manifold)

26I2DL: Prof. Dai

Recurrent Neural
Networks

27I2DL: Prof. Dai

Processing Sequences
• Recurrent neural networks process sequence data

• Input/output can be sequences

28I2DL: Prof. Dai

RNNs are Flexible

29

Classical neural networks for image classification

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs are Flexible

30

Image captioning

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs are Flexible

31

Language recognition

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs are Flexible

32

Machine translation

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs are Flexible

33

Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs are Flexible

34

Event classification
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/I2DL: Prof. Dai

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Basic Structure of an RNN
• Multi-layer RNN

35

Outputs

Inputs

Hidden
states

I2DL: Prof. Dai

Basic Structure of an RNN
• Multi-layer RNN

36

Outputs

Inputs

Hidden
states

The hidden state
will have its own
internal dynamics

More expressive
model!

I2DL: Prof. Dai

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

37

Hidden
state inputPrevious

hidden
state

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

38

Hidden
state Parameters to be learned

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

39

Hidden
state

Note: non-linearities
ignored for now

Output

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡

Basic Structure of an RNN
• We want to have notion of “time” or “sequence”

40

Hidden
state

Same parameters for each
time step = generalization!

Output

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝒉𝑡 = 𝜽𝒉𝑨𝑡

Basic Structure of an RNN
• Unrolling RNNs

41

Same function for the hidden layers

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

Basic Structure of an RNN
• Unrolling RNNs

42[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

Basic Structure of an RNN
• Unrolling RNNs as feedforward nets

43

Weights are the same!

I2DL: Prof. Dai

Backprop through an RNN

44I2DL: Prof. Dai

• Unrolling RNNs as feedforward nets

Chain rule

All the way to 𝑡 = 0

Add the derivatives at different times for each weight

Long-term Dependencies

45

I moved to Germany … so I speak German fluently.

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

Long-term Dependencies

46I2DL: Prof. Dai

• Simple recurrence

• Let us forget the input

Same weights are
multiplied over and over
again

𝑨𝑡 = 𝜽𝑐𝑨𝑡−1 + 𝜽𝑥𝒙𝑡

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

Long-term Dependencies
• Simple recurrence

47

What happens to small weights?

What happens to large weights?

Vanishing gradient

Exploding gradient

I2DL: Prof. Dai

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

Long-term Dependencies

48I2DL: Prof. Dai

• Simple recurrence

• If 𝜽 admits eigendecomposition

Diagonal of this
matrix are the
eigenvalues

Matrix of
eigenvectors

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

𝜽 = 𝑸𝚲𝑸𝑇

Long-term Dependencies

49I2DL: Prof. Dai

• Simple recurrence

• If 𝜽 admits eigendecomposition

• Orthogonal 𝜽 allows us to simplify the recurrence

𝑨𝑡 = 𝑸𝚲𝑡𝑸𝑇𝑨0

𝜽 = 𝑸𝚲𝑸𝑇

𝑨𝑡 = 𝜽𝑡𝑨0

Long-term Dependencies
• Simple recurrence

50

What happens to eigenvalues with
magnitude less than one?

What happens to eigenvalues with
magnitude larger than one?

Vanishing gradient

Exploding gradient Gradient
clipping

I2DL: Prof. Dai

𝑨𝑡 = 𝑸𝚲t𝑸𝑇𝑨0

Long-term Dependencies
• Simple recurrence

51

Let us just make a matrix with eigenvalues = 1

Allow the cell to maintain its “state”

I2DL: Prof. Dai

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

Vanishing Gradient

52[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

𝑨𝑡 = 𝜽𝒄
𝑡𝑨0

Vanishing Gradient

53[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑨𝑡 = 𝜽𝑡𝑨0• 1. From the weights

• 2. From the activation functions (𝑡𝑎𝑛ℎ)

1
?

Long Short Term
Memory

54

[Hochreiter et al., Neural Computation’97] Long Short-Term Memory

I2DL: Prof. Dai

Long-Short Term Memory Units

55[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Simple RNN has tanh as non-linearity

Long-Short Term Memory Units
LSTM

56[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

Long-Short Term Memory Units
• Key ingredients
• Cell = transports the information through the unit

57[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

Long-Short Term Memory Units
• Key ingredients
• Cell = transports the information through the unit
• Gate = remove or add information to the cell state

58

Sigmoid

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

LSTM: Step by Step

59[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

Decides when to
erase the cell state

Sigmoid = output
between 0 (forget)
and 1 (keep)

LSTM: Step by Step

60[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

Decides which
values will be
updated

New cell state,
output from a
tanh (−1,1)

LSTM: Step by Step
• Element-wise operations

61

Previous
states

Current
state

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

𝑪𝑡 = 𝒇𝑡⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

LSTM: Step by Step

62[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Output gate 𝒉𝑡 = 𝒐𝑡⊙ tanh 𝑪𝑡

Decides which
values will be
outputted

Output from a
tanh (−1, 1)

LSTM: Step by Step

63I2DL: Prof. Dai

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙ tanh 𝑪𝑡

LSTM: Step by Step

64

Learned through
backpropagation

I2DL: Prof. Dai

• Forget gate 𝒇𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑓𝒙𝑡 + 𝜽ℎ𝑓𝒉𝑡−1 + 𝒃𝑓)

• Input gate 𝒊𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑖𝒙𝑡 + 𝜽ℎ𝑖𝒉𝑡−1 + 𝒃𝑖)

• Output gate 𝒐𝑡 = 𝑠𝑖𝑔𝑚(𝜽𝑥𝑜𝒙𝑡 + 𝜽ℎ𝑜𝒉𝑡−1 + 𝒃𝑜)

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

• Cell 𝑪𝑡 = 𝒇𝑡⊙𝑪𝑡−1 +𝒊𝑡⊙𝒈𝑡

• Output 𝒉𝑡 = 𝒐𝑡⊙ tanh 𝑪𝑡

LSTM
• Highway for the gradient to flow

66[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

LSTM: Dimensions

67

128

128

What operation do I need to do to my input to get
a 128 vector representation?

128 128 128

When coding an
LSTM, we have to
define the size of the
hidden state

Dimensions need to
match

[Olah, https://colah.github.io ’15] Understanding LSTMsI2DL: Prof. Dai

• Cell update 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝜽𝑥𝑔𝒙𝑡 + 𝜽ℎ𝑔𝒉𝑡−1 + 𝒃𝑔)

LSTM in code

Attention

73I2DL: Prof. Dai

Attention is all you need

75I2DL: Prof. Dai

Attention is all you need

76I2DL: Prof. Dai

~62,000 citations in
5 years!

Attention vs convolution

77I2DL: Prof. Dai

Long-Term Dependencies

78

I moved to Germany … so I speak German fluently.
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I2DL: Prof. Dai

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Attention: Intuition

Context

I moved to Germany … so I speak German fluently
79I2DL: Prof. Dai

Attention: Architecture
• A decoder processes

the information

• Decoders take as
input:
– Previous decoder

hidden state
– Previous output
– Attention

D D D

Context

80I2DL: Prof. Dai

Transformers

81I2DL: Prof. Dai

Deep Learning Revolution

82I2DL: Prof. Dai

Deep Learning Deep Learning 2.0

Main idea Convolution Attention

Field invented Computer vision NLP

Started NeurIPS 2012 NeurIPS 2017

Paper AlexNet Transformers

Conquered vision Around 2014-2015 Around 2020-2021

Replaced
(Augmented)

Traditional ML/CV CNNs, RNNs

Transformers

84I2DL: Prof. Dai

Multi-Head
Attention on the
“encoder”

Fully connected
layer

Masked Multi-
Head Attention
on the “decoder”

Multi-Head Attention

85I2DL: Prof. Dai

Intuition: Take the query Q, find the most similar
key K, and then find the value V that
corresponds to the key.

In other words, learn V, K, Q where:
V – here is a bunch of interesting things.
K – here is how we can index some things.
Q – I would like to know this interesting thing.

Loosely connected to Neural Turing Machines
(Graves et al.).

Attention 𝑄,𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

Multi-Head Attention

86I2DL: Prof. Dai

Multiply queries
with keys

To train them well, divide by , “probably” because for
large values of the key’s dimension, the dot product grows
large in magnitude, pushing the softmax function into regions
where it has extremely small gradients.

Index the values
via a differentiable
operator.

Get the values

𝑑𝑘

Multi-Head Attention

87I2DL: Prof. Dai

Q

Adapted from Y. Kilcher

Multi-Head Attention

88I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Multi-Head Attention

89I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Multi-Head Attention

90I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Essentially, dot product between (<Q,K1>), (<Q,K2>), (<Q,K3>),
(<Q,K4>), (<Q,K5>).

softmax
𝑄𝐾𝑇

𝑑𝑘

Multi-Head Attention

91I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values.
The larger a value is, the higher is its softmax value.
Can be interpreted as a differentiable soft indexing.

Multi-Head Attention

92I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Is simply inducing a distribution over the values.
The larger a value is, the higher is its softmax value.
Can be interpreted as a differentiable soft indexing.

softmax
𝑄𝐾𝑇

𝑑𝑘

Multi-Head Attention

93I2DL: Prof. Dai

Q

K1

K2

K3
K4

K5

Values

V1

V2

V3

V4

V5

Selecting the value V where
the network needs to attend..softmax

𝑄𝐾𝑇

𝑑𝑘

Transformers – a closer look

96I2DL: Prof. Dai

K parallel
attention heads.

Transformers – a closer look

97I2DL: Prof. Dai

Good old fully-
connected
layers.

Transformers – a closer look

98I2DL: Prof. Dai

N layers of
attention
followed by FC

Transformers – a closer look

99I2DL: Prof. Dai

Same as multi-head attention,
but masked. Ensures that the
predictions for position i can
depend only on the known
outputs at positions less than i.

Transformers – a closer look

100I2DL: Prof. Dai

Multi-headed attention between
encoder and the decoder.

Transformers – a closer look

101I2DL: Prof. Dai

Projection and prediction.

What is missing from self-attention?

102I2DL: Prof. Dai

• Convolution: a different linear transformation for each
relative position. Allows you to distinguish what
information came from where.

• Self-attention: a weighted average.

Transformers – a closer look

103I2DL: Prof. Dai

Uses fixed positional encoding
based on trigonometric series, in
order for the model to make use
of the order of the sequence

dimension

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin
𝑝𝑜𝑠

100002𝑖/𝑑model

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

100002𝑖/𝑑model
)

Transformers – a final look

104I2DL: Prof. Dai

Self-attention: complexity

105I2DL: Prof. Dai

where n is the sequence length, d is the representation dimension,
k is the convolutional kernel size, and r is the size of the neighborhood.

Self-attention: complexity

106I2DL: Prof. Dai

where n is the sequence length, d is the representation dimension,
k is the convolutional kernel size, and r is the size of the neighborhood.

Considering that most sentences have a smaller dimension than the representation
dimension (in the paper, it is 512), self-attention is very efficient.

Transformers – training tricks

107I2DL: Prof. Dai

• ADAM optimizer with proportional learning rate:

• Residual dropout
• Label smoothing
• Checkpoint averaging

Transformers - results

108I2DL: Prof. Dai

Transformers - summary

109I2DL: Prof. Dai

• Significantly improved SOTA in machine translation
• Launched a new deep-learning revolution in MLP
• Building block of NLP models like BERT (Google) or

GPT/ChatGPT (OpenAI)
• BERT has been heavily used in Google Search

• And eventually made its way to computer vision (and
other related fields)

See you next time!

110I2DL: Prof. Dai

	幻灯片 2: Lecture 10 Recap
	幻灯片 3: LeNet
	幻灯片 4: AlexNet
	幻灯片 5: VGGNet
	幻灯片 6: Residual Block
	幻灯片 7: Inception Layer
	幻灯片 8: Lecture 11
	幻灯片 9: Transfer Learning
	幻灯片 10: Transfer Learning
	幻灯片 11: Transfer Learning
	幻灯片 12: Transfer Learning for Images
	幻灯片 13: Transfer Learning
	幻灯片 14: Transfer Learning
	幻灯片 15: Transfer Learning
	幻灯片 16: Transfer Learning
	幻灯片 17: When Transfer Learning Makes Sense
	幻灯片 18: Now you are:
	幻灯片 19: Representation Learning
	幻灯片 20: Learning Good Features
	幻灯片 21: Representation Learning
	幻灯片 22: Deep Representation Learning
	幻灯片 23: How to Learn Good Features?
	幻灯片 24: How to Learn Good Features?
	幻灯片 25: Apply to Downstream Tasks
	幻灯片 26: Transfer & Representation Learning
	幻灯片 27: Recurrent Neural Networks
	幻灯片 28: Processing Sequences
	幻灯片 29: RNNs are Flexible
	幻灯片 30: RNNs are Flexible
	幻灯片 31: RNNs are Flexible
	幻灯片 32: RNNs are Flexible
	幻灯片 33: RNNs are Flexible
	幻灯片 34: RNNs are Flexible
	幻灯片 35: Basic Structure of an RNN
	幻灯片 36: Basic Structure of an RNN
	幻灯片 37: Basic Structure of an RNN
	幻灯片 38: Basic Structure of an RNN
	幻灯片 39: Basic Structure of an RNN
	幻灯片 40: Basic Structure of an RNN
	幻灯片 41: Basic Structure of an RNN
	幻灯片 42: Basic Structure of an RNN
	幻灯片 43: Basic Structure of an RNN
	幻灯片 44: Backprop through an RNN
	幻灯片 45: Long-term Dependencies
	幻灯片 46: Long-term Dependencies
	幻灯片 47: Long-term Dependencies
	幻灯片 48: Long-term Dependencies
	幻灯片 49: Long-term Dependencies
	幻灯片 50: Long-term Dependencies
	幻灯片 51: Long-term Dependencies
	幻灯片 52: Vanishing Gradient
	幻灯片 53: Vanishing Gradient
	幻灯片 54: Long Short Term Memory
	幻灯片 55: Long-Short Term Memory Units
	幻灯片 56: Long-Short Term Memory Units
	幻灯片 57: Long-Short Term Memory Units
	幻灯片 58: Long-Short Term Memory Units
	幻灯片 59: LSTM: Step by Step
	幻灯片 60: LSTM: Step by Step
	幻灯片 61: LSTM: Step by Step
	幻灯片 62: LSTM: Step by Step
	幻灯片 63: LSTM: Step by Step
	幻灯片 64: LSTM: Step by Step
	幻灯片 66: LSTM
	幻灯片 67: LSTM: Dimensions
	幻灯片 68: LSTM in code
	幻灯片 73: Attention
	幻灯片 75: Attention is all you need
	幻灯片 76: Attention is all you need
	幻灯片 77: Attention vs convolution
	幻灯片 78: Long-Term Dependencies
	幻灯片 79: Attention: Intuition
	幻灯片 80: Attention: Architecture
	幻灯片 81: Transformers
	幻灯片 82: Deep Learning Revolution
	幻灯片 84: Transformers
	幻灯片 85: Multi-Head Attention
	幻灯片 86: Multi-Head Attention
	幻灯片 87: Multi-Head Attention
	幻灯片 88: Multi-Head Attention
	幻灯片 89: Multi-Head Attention
	幻灯片 90: Multi-Head Attention
	幻灯片 91: Multi-Head Attention
	幻灯片 92: Multi-Head Attention
	幻灯片 93: Multi-Head Attention
	幻灯片 96: Transformers – a closer look
	幻灯片 97: Transformers – a closer look
	幻灯片 98: Transformers – a closer look
	幻灯片 99: Transformers – a closer look
	幻灯片 100: Transformers – a closer look
	幻灯片 101: Transformers – a closer look
	幻灯片 102: What is missing from self-attention?
	幻灯片 103: Transformers – a closer look
	幻灯片 104: Transformers – a final look
	幻灯片 105: Self-attention: complexity
	幻灯片 106: Self-attention: complexity
	幻灯片 107: Transformers – training tricks
	幻灯片 108: Transformers - results
	幻灯片 109: Transformers - summary
	幻灯片 110: See you next time!

