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Image Classification
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Image Classification

Background clutter
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@ Image Classification

i/

Representation
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Machine Learning

« How can we learn to perform image classification?

Task Experience
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Machine Learning

Unsupervised learning Supervised learning

« No label or target class

« Find out properties of
the structure of the
data

« Clustering (k-means,
PCA, etc)
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Machine Learning

Unsupervised learning
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Supervised learning
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Machine Learning

Unsupervised learning Supervised learning

« [abels or target classes
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Machine Learning

Unsupervised learning Supervised learning
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Machine Learning

« How can we learn to perform image classification?

Experience
' D

Test data




Machine Learning

« How can we learn to perform image classification?

Task Experience

Performance
measure
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Machine Learning

Unsupervised learning Supervised learning

Reinforcement learning

iNteraction .
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Machine Learning

Unsupervised learning Supervised learning

Reinforcement learning

- < reward [Environment}
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Machine Learning

Supervised learning
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A Simple Classifier
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Nearest Neighbor —
NN classifier = dog

distance
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Nearest Neighbor

K-NN classifier = cat

distance

12D Prof. Dai



Nearest Neighbor

The Data NN Classifier 5NN Classifier

How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?

Source: https.//commons.wikimedia.org/wiki/File:Data3classes.png
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https://commons.wikimedia.org/wiki/File:Data3classes.png

Nearest Neighbor

L1 distance: |x — ¢|
* Hyperparameters < L2 distance  ||x — c]|»
No. of Neighbors: k

* These parameters are problem dependent.

« How do we choose these hyperparameters?
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Basic Recipe for Machine Learning
« Split your data

00% 207% 207%

train validation

\ J
!

Find your hyperparameters

Other splits are also possible (e.g., 80%/10%/10%)
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Basic Recipe for Machine Learning

A\ \

Test set is only used oncel

\. J
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Cross Validation

tramn

Run1 validation

Run 2

Run 3
Run 4

RuNn 5

Split the training data into N folds
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Cross Validation

20%

train validation

)

test
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!

Find your hyperparameters

" Why do cross

validation?

\

Why not just train

.

and test?

J
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Cross Validation

A\ \

Test set is only used oncel

\. J
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L Inear Declision

This lecture

Boundaries

-

.

What are the pros
and cons for using
LInear decision
boundaries?

~

J
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[ Inear Regression
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Linear Regression

«  Supervised learning

« Find a linear model that explains a target y given
iNnputs x
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Linear Regression

Training

> 0
Model parameters

INnput (e.g., Image,
measurement) Labels
(e.g., cat/dog)
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Linear Regression

o can be parameters of a
Training Neural Network

Testing

Xn+1,0 > Yn+1

Estimation

|
Data points Model parameters
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Linear Prediction

« A linear model is expressed in the form

— Input dimension

Vi =

]T\

Input data, features

d
=1
welghts (e, model parameters)
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Linear Prediction

« A linear model is expressed in the form
d

yi = 90 + leHJ = 80 + xilgl + xi292 + e xl-de

1

(R

> X
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Linear Prediction
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Linear Prediction

V1 X11 X1d 0,
y X21 X2d 6
Y2 | _ B, + E 52
)771 Xn1 Xnd i Qd i
V1] [1 %1 o Xaa [ [00]
Yol |1 X221 =+ X2q |04
Vi, 1 Xn1 = Xna ] 164
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Linear Prediction

y = X0 Input features
Prediction (one sample has d
\ / features)
_yl- -1 xll cee xldl- -90_
Yol |1 X212 = X2a | |01 T—
S E R : : Model
L Vn 1 Xp1 ° Xna 11041  parameters

(d weights and 1 bias)
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Linear Prediction

Temperature . G QOMODEL
¢
of the building v (/)

[]_ 25502
1—1050(|)

12D Prof. Dai



Linear Prediction

@ How do we
O ~ .
© @ o obtainthe
2 Q
Q o
S
Temperature b@& 5
~of the building o 9
S @@ o
SEnb [ ] 25 50
x 1 — 10 50
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How to Obtain the Model?

Labels (ground truth)
y

Data pcﬂntg

‘ Optimization ‘

| 0SS
function

Model parameters ngnahon

6 )
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How to Obtain the Model?

« |Loss function: measures how good my estimation is
(how good my model is) and tells the optimization
method how to make it better.

« Optimization: changes the model in order to improve
the loss function (l.e., to iImprove my estimation).
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Linear Regression: Loss Function

y o
@ @
o o Prediction:
Q
Pu o Temperature
1 ° of the building
> X
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Linear Regression: Loss Function

A

Yy o
0
o o Prediction:
[ )

Pu o Temperature

1 ° of the building
> X
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Linear Regression: Loss Function

> X

- 1 n Objective function
Minimizing J(6) = EZ(yi —¥)° Energy
i=1

12DL: Prof. Dai Cost function -



Optimization: Linear Least Squares

« Linear least squares: an approach to fit a linear model
to the data

1 n
mein J(8) = ng(f’i — ¥i)?

« Convex problem, there exists a closed-form solution
that Is unique.
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Optimization: Linear Least Squares

min J(0) = - .El(yi —y)° = - 'El(Xie —¥i)
1= l=

/ |

n training samples The estimation comes
from the linear model
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Optimization: Linear Least Squares

min J(0) = - -El(yi —y)° = - -El(XiH —¥i)
1= l=

min J(6) = (X6 — )" (X6 —y) Matrix notation
n training samples, n labels
each input vector has
sized
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Optimization: Linear Least Squares

min J(0) = 52(% —y)° = EZ(XL'B —¥i)
i=1 i=

min /(8) = (X6 —y)" (X0 — ) Matrix notation

More on matrix notation in the next exercise session |
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Optimization: Linear Least Squares

min J(0) = gZ(%‘ — i) = EZ(XL'B —¥i)
1= l=

min J(6) = (X6 — )" (X6 —y)

l Convex

aJ(0)
00 0

Optimum )

12D Prof. Dai
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Optimization Details in the

exercise
a/(6)

ion!
=~ 2 =2XTXe —2XTyv =0 session:
06 y

6 = (XTX)_ley
We have found / True output

an analytical Inputs: Outside Termperature of

solution to a temperature, the building
convex problem number of people,
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s this the best Estimate?

« |Least squares estimate

1 n
J©) = G = )
i=1
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Maximum Likelinood
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Maximum Likelihood Estimate

Paata(YIX) True underlying distribution

|

Pmoaet(Y|1X,0)  Parametric family of distributions

\

Controlled by parameter(s)

58



Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations,

pmodel(le' 0)

P

Observations from Paata (¥1X)
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Maximum Likelihood Estimate

« A method of estimating the parameters of a statistical
model given observations, by finding the parameter
values that maximize the likelihood of making the
observations given the parameters.

Oy = arg meaX pmodel(le' 0)
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Maximum Likelihood Estimate

« MLE assumes that the training samples are
iIndependent and generated by the same probability
distribution

n
pmodel(yp(r 9) — 1_[ pmodel()’i |Xi' 9)

T i=1

.1.d." assumption
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Maximum Likelihood

-stimate

n |
OyL = arg meax pmodel(yilxi» 9)

=1

n
Oy = arg mea)" z log| Dimoder (VilXi, 0)

=1

Logarithmic property logab = loga + logb
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Back to Linear Regression

n
Oy, = arg max Z log| Pimoaer (VilXi, 6)
=1

What shape does our
orobability distribution
have’
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Back to Linear Regression

p(y;|x;,0)  What shape does our probability
distribution have?
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Back to Linear Regression

Gaussian / Normal

p(yilx;, 0) distribution

Assuming ¥i = N (x;0,0%) =x;0 + N (0,0°)

mean
Gaussian:

1
PO = e 2’
J (2mo?)

12D Prof. Dai
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Back to Linear Regression

p(yilx;,0) =7

Assuming ¥i = N (x;0,0%) =x;0 + N (0,0°)
1

Gaussian: |

N — 1 —%(Yi@z
p(yi) \/m e 2

12D Prof. Dai

mean

Vi NN(.UJO-Z)



Back to Linear Regression

__1 2
p(y;|x;,0) = 2na?) Y 2e 202(3"

Assuming ¥i = N (x;0,0%) =x;0 + N (0,0°)

Gaussian:

(3/i€t>2

e 202

p(yi) = \/W

12D Prof. Dai

mean

Vi NN(.UJO-Z)



Back to Linear Regression

I~
p(yilx;, 8) <((2ma?)~1/2¢ 257" @

Original - i
optimization Omr = arg max z Pmodet VilXi, 0)
i=1

oroblem
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3ack to Linear Regression
zlog [(ZMZ) 2 707 "‘9)2]

l Canceling logand e

2—5108 (2mo )+Z 952 (vi — x;0)
=

i=1
l Matrix notation

e (2767) — —— (y — X8)T(y — X6)
> log(2ma 52 (¥ y
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0y = arg max

n
2

Details in the
exercise session!

Back to Linear Regression

n
z log pmodel(:Vilxi: 9) >
=1

v

9J(6) _

0
00

0 = (XTX) 1XTy

12D Prof. Dai

1
log(2mo?) — 52 (y — X0)" (y — X0)

How can we find
the estimate of
theta?

/1



Linear Regression

« Maximum Likelihood Estimate (MLE) corresponds to
the Least Squares Estimate (given the assumptions)

« |ntroduced the concepts of loss function and
optimization to obtain the best model for regression

12DL: Prof. Dai
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Regression vs Classification

« Regression: predict a continuous output value (e.q.,
temperature of a room)

« Classification: predict a discrete value
— Binary classification: output is either O or 1 -
— Multi-class classification: set of N classes

12D Prof. Dai
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L ogistic Regression
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Sigmoid for Binary Predictions

1
1+e™*

Xo o(x) =
1

Can be interpreted
as a probability

O
p(y; = 1|x;,0)
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Spoiler Alert: 1-Layer Neural Network
1
1+e™

X o(x) =
1

Can be interpreted
as a probability

O
p(y; = 1|x;,0)
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L ogistic Regression

« Probability of a binary output

n
y=py=1%06)=| [0 = 1fx.6)
=1

The prediction of 5. —
.= o(x;0
our sigmoid Vi (x:0)

12D Prof. Dai



L ogistic Regression

« Probability of a binary output

n
y=p(y=1|X0) = Hp(yi = 1|x;, 8)
=1

Bernoulli trial

Model for oz oavi—z ), z=1
deior p(zlg) = pZ(1 - ¢) —{1_ o i 70
XThe prediction of

our sigmoid
I2DL: Prof. Dai



L ogistic Regression

« Probability of a binary output

y=ply=1|X0) = Hp(yl = 1]x;,0)

Model for
Hylyl(l P; ) (1=yi) coins

Prediction of the True labels: 0 or1
2DL: Prof Dal Sigmoid: continuous



L ogistic Regression: Loss Function

« Probability of a binary output
p(yIX,0) =9 = ]_[ 571 (1 - 90
« Maximum Likelihood Estimate

Oy = arg meax v|X, 0)
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L ogistic Regression: Loss Function

n

pyIX,0) =9 = [ [[p7ia - g2

=1
z lOg (yyl(l y )(1 3’1))

=1
n

yilogy; + (1 —y;)log(l —y;)
i=1
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L ogistic Regression: Loss Function

L&, yi) = yilogy; + (L =y Hegtt—73))

y;i =1 — L(¥;,1) = logy;

Maximize! Oy = arg max log p(y|X, 0)

12D Prof. Dai
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L ogistic Regression: Loss Function

L, yi) = yilogy; + (L=yleg(t—=7;)

y;i =1 > L(P;,1) = logy;

We want logy; large; since logarithm is a
monotonically increasing function, we also want

large y; .

(1 is the largest value our model's estimate can takel)

of. Dai



L ogistic Regression: Loss Function

L1, yi) =W+ (1 —y;)log(1l—7;)

y;i =1 > L(P;,1) = logy;
yi =0 > L(3;,0) = log(1 —9;)

We want log(1 — y;) large; so we want y; to be
small

(0 I1s the smallest value our model's estimate can takel)

12D Prof. Dai



L ogistic Regression: Loss Function

L, yi) =yilogy; + (1 —y;)log(1 —9;)

Referred to as binary cross-entropy loss (BCE) ‘

« Related to the multi-class loss you will see in this
course (also called softmax [oss)
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Logistic Regression: Optimization
e [oss function
L, yi) = yilogy; + (1 —y;)log(1 = 3;)
« Cost function
C(6) = ——2 LSy

/ yi = 0(x;0)
Minimization 1 &
= —— ) yilog; + (1 - y;) log(1 -

2DL Prof. Dai =1



Logistic Regression: Optimization

 No closed-form solution

« Make use of an iterative method = gradient descent

Gradient descent -
later on!
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Why Machine Learning so Cool

« \We can learn from experience
-> Intelligence, certain ability to infer the future!

« Even linear models are often pretty good for
complex phenomena: e.g., weather:

— Linear combination of day-time, day-year etc. is often
pretty good
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Many Examples of Logistic Regression

« Coronavirus models behave like logistic regressions
— Exponential spread at beginning
— Plateaus when certain portion of pop. is infected/Immune

12.5k

Total Coronavirus Cases in South Korea
10k

7.5k

Total Coronavirus Cases

2DL: Prof. Dai https.//www.worldometersinfo/coronavirus o



https://www.worldometers.info/coronavirus

Many Examples of Logistic Regression

« Coronavirus models behave like logistic regressions
— Exponential spread at beginning
— Plateaus when certain portion of pop. is infected/Immune

200k

| _ Think about good features:
. Total Coronavirus Cases in Germany _ Total popu[ation
- Population density
- Implementation of Measures
- Reasonable government © ?
- Etc. (many more of course)

100k

Total Coronavirus

50k

\\\\\\\\\\\\\\\\\\\\\\\
Y y Y
S Qé & Qé’ ¥ g a® G L T C I I . C TS RS R S R S B S )
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The Model Matters

« Each case requires different models; linear vs logistic

« Many models:
— #coronavirus_infections cannot be > #total_population

— Munich housing prizes seem exponential though
« No hard upper bound -> prizes can always grow!
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Next Lectures

« Next exercise session: Math Recap |l

 Next Lecture: Lecture 3.

— Jumping towards our first Neural Networks and
Computational Graphs
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References for further Reading

o Cross validation:

— https:.//medium.com/@zstern/k-fold-cross-validation-
explained-5aebagoebb?y

— https.//towardsdatascience.com/train-test-split-and-
cross-validation-in-python-80b6t1beca4bb

« General Machine Learning book:
— Pattern Recognition and Machine Learning. C. Bishop.
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https://medium.com/@zstern/k-fold-cross-validation-explained-5aeba90ebb3
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
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See you next week ©
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