
Machine Learning 
Basics
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Machine Learning

Task
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Image Classification
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Image Classification

Occlusions
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Image Classification
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Background clutter



Representation

Image Classification
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Task

Image 
classification

Experience

Data

Machine Learning
• How can we learn to perform image classification?
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Supervised learning

Machine Learning

• No label or target class

• Find out properties of 
the structure of the 
data

• Clustering (k-means, 
PCA, etc.)
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Unsupervised learning



Machine Learning

Unsupervised learning Supervised learning

I2DL: Prof. Dai 10



Machine Learning

• Labels or target classes

Unsupervised learning Supervised learning
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DOG DOG

DOG

CAT

CAT

CAT

Machine Learning

Unsupervised learning Supervised learning
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Experience

DataTraining dataTest data

Underlying assumption that 
train and test data come 
from the same distribution

Machine Learning
• How can we learn to perform image classification?
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Task

Image 
classification

Experience

Data
Performance 

measure

Accuracy

Machine Learning
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• How can we learn to perform image classification?



Reinforcement learning

Agents Environment
interaction 

Machine Learning

Unsupervised learning Supervised learning
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Reinforcement learning

Agents Environment
reward

Machine Learning

Unsupervised learning Supervised learning
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Reinforcement learning

Agents Environment
reward

Machine Learning

Unsupervised learning Supervised learning
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A Simple Classifier
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Nearest Neighbor

?
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Nearest Neighbor

distance

NN classifier = dog

I2DL: Prof. Dai 20



Nearest Neighbor

distance

k-NN classifier = cat
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Nearest Neighbor

Source: https://commons.wikimedia.org/wiki/File:Data3classes.png

How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?
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NN Classifier 5NN ClassifierThe Data

https://commons.wikimedia.org/wiki/File:Data3classes.png


Nearest Neighbor

• Hyperparameters

• These parameters are problem dependent.

• How do we choose these hyperparameters?

L2 distance : ||𝑥 − 𝑐||2

L1 distance : |𝑥 − 𝑐|

No. of Neighbors: 𝑘
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Basic Recipe for Machine Learning
• Split your data

I2DL: Prof. Dai 24

Find your hyperparameters

train testvalidation

20%60% 20%

Other splits are also possible (e.g., 80%/10%/10%)



Basic Recipe for Machine Learning
• Split your data
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Find your hyperparameters

train testvalidation

20%60% 20%

Test set is only used once!



Cross Validation
train

validationRun 1

Run 2

Run 3

Run 4

Run 5

Split the training data into N folds
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Cross Validation

Find your hyperparameters

train testvalidation

20%60% 20%

Why do cross 
validation? 

Why not just train 
and test?
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Find your hyperparameters

train testvalidation

20%60% 20%

Why do cross 
validation? Why 
not just train and 

test?

Cross Validation

Test set is only used once!
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Linear Decision Boundaries

This lecture

What are the pros 
and cons for using 

linear decision 
boundaries?
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Linear Regression
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Linear Regression

• Supervised learning

• Find a linear model that explains a target 𝒚 given 
inputs 𝒙

𝒙

𝒚

I2DL: Prof. Dai 34



Training

Model parameters

Linear Regression

{𝒙1:𝑛, 𝒚1:𝑛}

Data points
𝜽

Input (e.g., image, 

measurement) Labels 
(e.g., cat/dog)
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Learner



Training

Testing

Learner
Model parameters

Predictor

Linear Regression
can be parameters of a 

Neural Network

{𝒙1:𝑛, 𝒚1:𝑛}

Data points
𝜽

𝑥𝑛+1, 𝜽 ො𝑦𝑛+1

Estimation
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Input data, features

weights (i.e., model parameters)

input dimension

Linear Prediction
• A linear model is expressed in the form

ො𝑦𝑖 =

𝑗=1

𝑑

𝑥𝑖𝑗𝜃𝑗
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ො𝑦𝑖 = 𝜃0 +

𝑗=1

𝑑

𝑥𝑖𝑗𝜃𝑗 = 𝜃0 + 𝑥𝑖1𝜃1 + 𝑥𝑖2𝜃2 + ⋯+ 𝑥𝑖𝑑𝜃𝑑

bias

Linear Prediction
• A linear model is expressed in the form

𝒙

𝒚
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𝜃0



Temperature 
of a building

Outside 
temperature

Number of 
people

Sun 
exposure

Level of 
humidity

Linear Prediction

𝜃1 𝜃3

𝜃2 𝜃4

𝑥1

𝑥2

𝑥3

𝑥4
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Linear Prediction
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ො𝑦1
ො𝑦2
⋮
ො𝑦𝑛

= 𝜃0 +

𝑥11
𝑥21

⋯
⋯

𝑥1𝑑
𝑥2𝑑

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑑

∙

𝜃1
𝜃2
⋮
𝜃𝑑

ො𝑦1
ො𝑦2
⋮
ො𝑦𝑛

=

1
1
⋮
1

𝑥11
𝑥21

⋯
⋯

𝑥1𝑑
𝑥2𝑑

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑑

𝜃0
𝜃1
⋮
𝜃𝑑

֜ ො𝐲 = 𝐗𝜽



Input features
(one sample has 𝑑

features)

Model 
parameters

Prediction

Linear Prediction

ො𝐲 = 𝐗𝜽
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(𝑑 weights and 1 bias)

ො𝑦1
ො𝑦2
⋮
ො𝑦𝑛

=

1
1
⋮
1

𝑥11
𝑥21

⋯
⋯

𝑥1𝑑
𝑥2𝑑

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑑

𝜃0
𝜃1
⋮
𝜃𝑑



Temperature 
of the building

Linear Prediction
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ො𝑦1
ො𝑦2

=
1 25
1 − 10

50
50

2
0

50
10

⋅

0.2
0.64
0
1

0.14

MODEL



ො𝑦1
ො𝑦2

=
1 25
1 − 10

50
50

2
0

50
10

⋅

0.2
0.64
0
1

0.14

Temperature 
of the building

MODEL

Linear Prediction
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How do we 
obtain the 

model?



How to Obtain the Model?
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Data points

Model parameters

Labels (ground truth)

Estimation

Loss 
function

Optimization
𝐗

𝜃 ො𝑦

𝑦



How to Obtain the Model?

• Loss function: measures how good my estimation is 
(how good my model is) and tells the optimization 
method how to make it better.

• Optimization: changes the model in order to improve 
the loss function (i.e., to improve my estimation).
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Prediction: 
Temperature 

of the building

Linear Regression: Loss Function
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Linear Regression: Loss Function
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Prediction: 
Temperature 

of the building



Minimizing
Objective function

Energy
Cost function

Linear Regression: Loss Function

𝐽 𝜽 =
1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2
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Optimization: Linear Least Squares
• Linear least squares: an approach to fit a linear model 

to the data

• Convex problem, there exists a closed-form solution 
that is unique.

min
𝜃

𝐽 𝜽 =
1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2
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Optimization: Linear Least Squares

The estimation comes 
from the linear model

𝑛 training samples

=
1

𝑛


𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2
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min
𝜽

𝐽 𝜽 =
1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2



Optimization: Linear Least Squares

min
𝜽

𝐽 𝜽 =
1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 =

1

𝑛


𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2

min
𝜽

𝐽 𝜽 = 𝐗𝜽 − 𝒚 𝑇(𝐗𝜽 − 𝒚)

𝑛 training samples, 
each input vector has 

size 𝑑

𝑛 labels

Matrix notation
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Optimization: Linear Least Squares

min
𝜽

𝐽 𝜽 =
1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 =

1

𝑛


𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2

min
𝜽

𝐽 𝜽 = 𝐗𝜽 − 𝒚 𝑇(𝐗𝜽 − 𝒚) Matrix notation

More on matrix notation in the next exercise session
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Optimization: Linear Least Squares

min
𝜽

𝐽 𝜽 =
1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 =

1

𝑛


𝑖=1

𝑛

𝐱𝑖𝜽 − 𝑦𝑖
2

min
𝜽

𝐽 𝜽 = 𝐗𝜽 − 𝒚 𝑇(𝐗𝜽 − 𝒚)

53

Convex

Optimum

𝜕𝐽(𝜽)

𝜕𝜽
= 0
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True output: 
Temperature of 

the building

Inputs: Outside 
temperature, 

number of people, 
…

Optimization

We have found 
an analytical 
solution to a 

convex problem

Details in the 
exercise 
session!𝜕𝐽(𝜃)

𝜕𝜃
= 2𝐗𝑇𝐗𝜽 − 2𝐗𝑇𝐲 = 0

𝜃 = 𝐗𝑇𝐗 −1𝐗𝑇𝐲
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Is this the best Estimate?
• Least squares estimate 

𝐽 𝜽 =
1

𝑛


𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2
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Maximum Likelihood
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Maximum Likelihood Estimate

Controlled by parameter(s)

Parametric family of distributions

𝑝𝑑𝑎𝑡𝑎(𝐲|𝐗)

𝑝𝑚𝑜𝑑𝑒𝑙(𝐲|𝐗, 𝜽)
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True underlying distribution



Maximum Likelihood Estimate
• A method of estimating the parameters of a statistical 

model given observations, 

Observations from  𝑝𝑑𝑎𝑡𝑎(𝐲|𝐗)

𝑝𝑚𝑜𝑑𝑒𝑙(𝐲|𝐗, 𝜽)
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Maximum Likelihood Estimate
• A method of estimating the parameters of a statistical 

model given observations, by finding the parameter 
values that maximize the likelihood of making the 
observations given the parameters.

𝜽𝑴𝑳 = arg max
𝜽

𝑝𝑚𝑜𝑑𝑒𝑙(𝐲|𝐗, 𝜽)
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Maximum Likelihood Estimate
• MLE assumes that the training samples are 

independent and generated by the same probability 
distribution

𝑝𝑚𝑜𝑑𝑒𝑙 𝐲 𝐗, 𝜽 =ෑ

𝑖=1

𝑛

𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)
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“i.i.d.” assumption



Maximum Likelihood Estimate

𝜽𝑴𝑳 = arg max
𝜽

ෑ

𝑖=1

𝑛

𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)

𝜽𝑴𝑳 = arg max
𝜽



𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)

Logarithmic property log 𝑎𝑏 = log 𝑎 + log 𝑏
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𝜽𝑴𝑳 = arg max
𝜽



𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)

Back to Linear Regression

What shape does our 
probability distribution 

have?
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What shape does our probability 
distribution have?

𝑝(𝑦𝑖|𝐱𝑖 , 𝜽)

I2DL: Prof. Dai 65

Back to Linear Regression



Assuming

Gaussian / Normal 
distribution𝑝(𝑦𝑖|𝐱𝑖 , 𝜽)

𝑦𝑖 = 𝒩 𝐱𝑖𝜽, 𝜎
2 = 𝐱𝑖𝜽 +𝒩(0, 𝜎2)

mean
Gaussian:

𝑝 𝑦𝑖 =
1

2𝜋𝜎2
𝑒
−

1
2𝜎2

𝑦𝑖−𝜇
2

𝑦𝑖 ~𝒩(𝜇, 𝜎2)
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Back to Linear Regression



Assuming

𝑝 𝑦𝑖 𝐱𝑖 , 𝜽 = ?

𝑦𝑖 = 𝒩 𝐱𝑖𝜽, 𝜎
2 = 𝐱𝑖𝜽 +𝒩(0, 𝜎2)

𝑝 𝑦𝑖 =
1

2𝜋𝜎2
𝑒
−

1
2𝜎2

𝑦𝑖−𝜇
2

𝑦𝑖 ~𝒩(𝜇, 𝜎2)
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Back to Linear Regression

mean
Gaussian:

𝑝 𝑦𝑖 =
1

2𝜋𝜎2
𝑒
−

1
2𝜎2

𝑦𝑖−𝜇
2

𝑦𝑖 ~𝒩(𝜇, 𝜎2)



𝑝 𝑦𝑖 𝐱𝑖 , 𝜽 = 2𝜋𝜎2 −1/2𝑒
−

1
2𝜎2

𝑦𝑖−𝐱𝒊𝜽
2

Assuming 𝑦𝑖 = 𝒩 𝐱𝑖𝜽, 𝜎
2 = 𝐱𝑖𝜽 +𝒩(0, 𝜎2)

𝑝 𝑦𝑖 =
1

2𝜋𝜎2
𝑒
−

1
2𝜎2

𝑦𝑖−𝜇
2

𝑦𝑖 ~𝒩(𝜇, 𝜎2)
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Back to Linear Regression

mean
Gaussian:

𝑝 𝑦𝑖 =
1

2𝜋𝜎2
𝑒
−

1
2𝜎2

𝑦𝑖−𝜇
2

𝑦𝑖 ~𝒩(𝜇, 𝜎2)



Back to Linear Regression

𝑝 𝑦𝑖 𝐱𝑖 , 𝜽 = 2𝜋𝜎2 −1/2𝑒
−

1
2𝜎2

𝑦𝑖−𝐱𝒊𝜽
2

Original 
optimization 
problem

𝜽𝑴𝑳 = arg max
𝜽



𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)
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Back to Linear Regression


𝑖=1

𝑛

log 2𝜋𝜎2 −
1
2 𝑒

−
1

2𝜎2
𝑦𝑖−𝒙𝒊𝜽

2

Matrix notation

Canceling log and 𝑒

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
𝒚 − 𝑿𝜽 𝑇 𝒚 − 𝑿𝜽
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𝑖=1

𝑛

−
1

2
log 2𝜋𝜎2 +

𝑖=1

𝑛

−
1

2𝜎2
𝑦𝑖 − 𝒙𝒊𝜽

2



𝜃𝑀𝐿 = arg max
𝜃



𝑖=1

𝑛

log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝐱𝑖 , 𝜽)

Back to Linear Regression

How can we find 
the estimate of 
theta?

Details in the 
exercise session!

−
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2
𝐲 − 𝐗𝜽 𝑇 𝐲 − 𝐗𝜽

𝜕𝐽(𝜽)

𝜕𝜽
= 0

𝜽 = 𝑿𝑇𝑿 −1𝑿𝑇𝐲
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Linear Regression
• Maximum Likelihood Estimate (MLE) corresponds to 

the Least Squares Estimate (given the assumptions)

• Introduced the concepts of loss function and 
optimization to obtain the best model for regression
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Image Classification
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Regression vs Classification

• Regression: predict a continuous output value (e.g., 
temperature of a room)

• Classification: predict a discrete value 
– Binary classification: output is either 0 or 1
– Multi-class classification: set of N classes 
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Logistic Regression

CAT classifier
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Sigmoid for Binary Predictions

Can be interpreted 
as a probability

1

0

𝑥0

𝑥1

𝑥2

𝜃1

𝜃0

𝜃2

Σ

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)
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Spoiler Alert: 1-Layer Neural Network

1

0

𝑥0

𝑥1

𝑥2

𝜃1

𝜃0

𝜃2

Σ

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)
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Can be interpreted 
as a probability



Logistic Regression
• Probability of a binary output 

The prediction of 
our sigmoid

ො𝐲 = 𝑝 𝐲 = 1 𝐗, 𝜽 =ෑ

𝑖=1

𝑛

𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)

ො𝑦𝑖 = 𝜎(𝐱𝑖𝜽)
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Logistic Regression
• Probability of a binary output 

ො𝐲 = 𝑝 𝐲 = 1 𝐗, 𝜽 =ෑ

𝑖=1

𝑛

𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)

Model for 
coins

Bernoulli trial

The prediction of 
our sigmoid

𝑝 𝑧 𝜙 = 𝜙𝑧 1 − 𝜙 1−𝑧 = ቊ
𝜙 , if 𝑧 = 1
1 − 𝜙, if 𝑧 = 0
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Logistic Regression
• Probability of a binary output 

ො𝐲 = 𝑝 𝐲 = 1 𝐗, 𝜽 =ෑ

𝑖=1

𝑛

𝑝(𝑦𝑖 = 1|𝐱𝑖 , 𝜽)

Model for 
coinsො𝐲 =ෑ

𝑖=1

𝑛

ො𝑦𝑖
𝑦𝑖 1 − ො𝑦𝑖

(1−𝑦𝑖)

True labels: 0 or 1Prediction of the 
Sigmoid: continuous I2DL: Prof. Dai 80



Logistic Regression: Loss Function
• Probability of a binary output 

• Maximum Likelihood Estimate

𝑝 y 𝐗, 𝜽 = ො𝐲 =ෑ

𝑖=1

𝑛

ො𝑦𝑖
𝑦𝑖 1 − ො𝑦𝑖

(1−𝑦𝑖)

𝜽𝑴𝑳 = arg max
𝜽

log 𝑝 y 𝐗, 𝜽

I2DL: Prof. Dai 81



Logistic Regression: Loss Function

𝑝 y 𝐗, 𝜽 = ො𝐲 =ෑ

𝑖=1

𝑛

ො𝑦𝑖
𝑦𝑖 1 − ො𝑦𝑖

(1−𝑦𝑖)



𝑖=1

𝑛

log ො𝑦𝑖
𝑦𝑖 1 − ො𝑦𝑖

(1−𝑦𝑖)



𝑖=1

𝑛

𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)
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Logistic Regression: Loss Function

ℒ ො𝑦𝑖 , 𝑦𝑖 = 𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)

𝑦𝑖 = 1 ℒ ො𝑦𝑖 , 1 = log ො𝑦𝑖
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Maximize! 𝜽𝑴𝑳 = arg max
𝜽

log 𝑝 y 𝐗, 𝜽



Logistic Regression: Loss Function

ℒ ො𝑦𝑖 , 𝑦𝑖 = 𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)

𝑦𝑖 = 1 ℒ ො𝑦𝑖 , 1 = log ො𝑦𝑖

We want  log ො𝑦𝑖 large; since logarithm is a 
monotonically increasing function, we also want 

large ො𝑦𝑖 .

(1 is the largest value our model’s estimate can take!)  
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Logistic Regression: Loss Function

ℒ ො𝑦𝑖 , 𝑦𝑖 = 𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)

We want  log 1 − ො𝑦𝑖 large; so we want  ො𝑦𝑖 to be 
small

(0 is the smallest value our model’s estimate can take!)  

𝑦𝑖 = 0 ℒ ො𝑦𝑖 , 0 = log 1 − ො𝑦𝑖

𝑦𝑖 = 1 ℒ ො𝑦𝑖 , 1 = log ො𝑦𝑖
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Logistic Regression: Loss Function

• Related to the multi-class loss you will see in this 
course (also called softmax loss)

Referred to as binary cross-entropy loss (BCE)

ℒ ො𝑦𝑖 , 𝑦𝑖 = 𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)
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𝐶 𝜃 = −
1

𝑛


𝑖=1

𝑛

ℒ ො𝑦𝑖 , 𝑦𝑖

= −
1

𝑛


𝑖=1

𝑛

𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)

Logistic Regression: Optimization
• Loss function

• Cost function

Minimization

ℒ ො𝑦𝑖 , 𝑦𝑖 = 𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ො𝑦𝑖)

ො𝑦𝑖 = 𝜎(𝐱𝑖𝜽)
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Logistic Regression: Optimization
• No closed-form solution

• Make use of an iterative method→ gradient descent

Gradient descent –
later on!
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Why Machine Learning so Cool
• We can learn from experience

-> Intelligence, certain ability to infer the future!

• Even linear models are often pretty good for 
complex phenomena: e.g., weather:
– Linear combination of day-time, day-year etc. is often 

pretty good
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Many Examples of Logistic Regression

• Coronavirus models behave like logistic regressions
– Exponential spread at beginning
– Plateaus when certain portion of pop. is infected/immune 

I2DL: Prof. Dai 91https://www.worldometers.info/coronavirus
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Many Examples of Logistic Regression

• Coronavirus models behave like logistic regressions
– Exponential spread at beginning
– Plateaus when certain portion of pop. is infected/immune 
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Think about good features:
- Total population
- Population density
- Implementation of Measures
- Reasonable government ☺ ?
- Etc. (many more of course)

https://www.worldometers.info/coronavirus


The Model Matters

• Each case requires different models; linear vs logistic

• Many models:
– #coronavirus_infections cannot be > #total_population
– Munich housing prizes seem exponential though

• No hard upper bound -> prizes can always grow!
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Next Lectures

• Next exercise session: Math Recap II

• Next Lecture: Lecture 3:
– Jumping towards our first Neural Networks and 

Computational Graphs
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References for further Reading
• Cross validation:

– https://medium.com/@zstern/k-fold-cross-validation-
explained-5aeba90ebb3

– https://towardsdatascience.com/train-test-split-and-
cross-validation-in-python-80b61beca4b6

• General Machine Learning book:
– Pattern Recognition and Machine Learning. C. Bishop.
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See you next week ☺
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