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Basic Notation
• Vector: We call an element of  a vector with  entries.
• Elements of a vector: The  element of a vector  is denoted 

by .
• Matrix: We call an element of  a matrix with  rows and 

columns. 
• Elements of a matrix: For , we denote the element at the 

 row and  column by .
• Transpose: The transpose of a matrix results from “flipping” rows and

columns. We denote the transpose of a matrix  by 
. Similarly, we use transposed vectors. 

ℝn n
ith v ∈ ℝn

vi ∈ ℝ
ℝn×m n m

A ∈ ℝn×m

ith jth Aij ∈ ℝ

A ∈ ℝn×m

AT ∈ ℝm×n

5
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Vector
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An n-dimensional vector describes an element in an n-dimensional space

https://projector.tensorflow.org/

v =

v1
v2
⋮
vn

∈ ℝn

Addition SubtractionVector 
Operations: 

Scalar 
Multiplication Dot Product

https://projector.tensorflow.org/
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Vector Operations
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For we have a, b ∈ ℝn

a + b =

a1 + b1

a2 + b2
⋮

an + bn

∈ ℝn 𝑎

𝑏

𝑎

𝑏
a  +  𝑏 

Vector 
Operations: Addition Subtraction Scalar 

Multiplication Dot Product
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Vector Operations

8

For we have a, b ∈ ℝn

a − b =

a1 − b1

a2 − b2
⋮

an − bn

∈ ℝn
𝑎

𝑏

a  −  𝑏 

−𝑏

Vector 
Operations: Addition Subtraction Scalar 

Multiplication Dot Product
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Vector Operations
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For  we have a ∈ ℝn, c ∈ ℝ

c ⋅ a =

c ⋅ a1
c ⋅ a2

⋮
c ⋅ an

∈ ℝn

𝑐  ⋅ 𝑎 

𝑎

Vector 
Operations: Addition Subtraction Scalar 

Multiplication Dot Product
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Vector Operations
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Definition: For , the dot product is defined as follows:

                           

a, b ∈ ℝn

a ⋅ b = aT ⋅ b
= a1 ⋅ b1 + a2 ⋅ b2 + … + an ⋅ bn

=
n

∑
i=1

ai ⋅ bi ∈ ℝ

Vector 
Operations: Addition Subtraction Scalar 

Multiplication Dot Product
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Vector Operations
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Properties:
• Commutative: 
• Geometric interpretation:

• Orthogonality: Two non-zero vectors are 
orthogonal to each other 

a ⋅ b = b ⋅ a

a ⋅ b = ∥a∥ ⋅ ∥b∥ ⋅ cos(θ)

⟺ a ⋅ b = 0

Vector 
Operations: Addition Subtraction Scalar 

Multiplication Dot Product
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Vector Operations
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Properties:
• Commutative: 
• Geometric interpretation:

• Orthogonality: Two non-zero vectors are 
orthogonal to each other 

a ⋅ b = b ⋅ a

a ⋅ b = ∥a∥ ⋅ ∥b∥ ⋅ cos(θ)

⟺ a ⋅ b = 0

https://www.geogebra.org/m/Yu6869By

Vector 
Operations: Addition Subtraction Scalar 

Multiplication Dot Product
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A matrix  is denoted asA ∈ ℝn×m

A =

a11 a12 … a1m
a21 a22 … a2m
⋮ ⋮ ⋱ ⋮

an1 an2 … anm

∈ ℝn×m

Matrix

13

Matrix 
Operations: 

Matrix-vector 
Multiplication

Matrix-matrix 
Multiplication

Hadamard 
Product
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Matrix
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• Multiplication of matrix with a vector is defined as follows:

For : 

• Attention: The respective dimension have to fit, otherwise the multiplication is not well-defined.

•
Example:  with  and   

A ∈ ℝn×m, b ∈ ℝm A ⋅ b =

a11 a12 … a1m
a21 a22 … a2m
⋮ ⋮ ⋱ ⋮

an1 an2 … anm

⋅

b1

b2
⋮
bm

=

a11 ⋅ b1 + a12 ⋅ b2 + … + a1m ⋅ bm

a21 ⋅ b1 + a22 ⋅ b2 + … + a2m ⋅ bm
⋮

an1 ⋅ b1 + an2 ⋅ b2 + … + anm ⋅ bm

∈ ℝn

⟹ A
⏟

n×m

⋅ b
⏟

m×1

= c
⏟

n×1

A ∈ ℝ3×2, b ∈ ℝ2 A = (
1 2
3 4
5 6) b = (2

3) ⟹ (
1 2
3 4
5 6) ⋅ (2

3) = (
8
18
28)

Matrix 
Operations: 

Matrix-vector 
Multiplication

Matrix-matrix 
Multiplication

Hadamard 
Product
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Matrix Operations
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• Similar, the multiplication of two matrices with each other is defined as follows: 
For  we have 

 where 

• Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices  we 
have 

A ∈ ℝn×m, B ∈ ℝm×l

A ⋅ B =

a11 a12 … a1m
a21 a22 … a2m
⋮ ⋮ ⋱ ⋮

an1 an2 … anm

⋅

b11 b12 … b1l

b21 b22 … b2l
⋮ ⋮ ⋱ ⋮

bm1 bm2 … bml

=

c11 c12 … c1l
c21 c22 … c2l
⋮ ⋮ ⋱ ⋮

cn1 cn2 … cnl

∈ ℝn×l

cij =
m

∑
k=1

aik ⋅ bkj = ai1 ⋅ b1j + ai2 ⋅ b2j + … + aim ⋅ bmj

A ∈ ℝn×m, B ∈ ℝm×n

A ⋅ B ≠ B ⋅ A

Matrix 
Operations: 

Matrix-vector 
Multiplication

Matrix-matrix 
Multiplication

Hadamard 
Product
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Matrix Operations
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• The Hadamard product is the element wise product of two matrices. For
two matrices of the same dimension  it is given by

 For all matrix operations, it is important to check the dimensions!

A, B ∈ ℝn×m

A ⊙ B =

a11 … a1m
a21 … a2m
⋮ ⋱ ⋮

an1 … anm

⋅

b11 … b1m

b21 … b2m
⋮ ⋱ ⋮

bn1 … bnm

=

a11 ⋅ b11 … a1m ⋅ b1m

a21 ⋅ b21 … a2m ⋅ b2m
⋮ ⋱ ⋮

an1 ⋅ bn1 … anm ⋅ bnm

∈ ℝn×m

→

Matrix 
Operations: 

Matrix-vector 
Multiplication

Matrix-matrix 
Multiplication

Hadamard 
Product
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Tensor
• Definition: A tensor is a multidimensional array and a generalization of the

concepts of a vector and a matrix.

17
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Tensors are used to 
represent RGB 

images.

H × W × RGB

Source: https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

18

Tensors in Computer Vision

https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors
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Norm
• Norm: measure of the “length” of a vector
• Definition: A norm is a non-negative function

which is defined by the following the properties for elements 
:

1. Triangle inequality: 
2.  for a scalar 
3. if and only if

(*  is a vector space over a field ; in our case we have )
• Remark: Every such function defines a norm on the vector space.
• Examples: L1-norm, L2-norm

∥ ⋅ ∥ : V → ℝ

v, w ∈ V
∥v + w∥ ≤ ∥v∥ + ∥w∥

∥a ⋅ v∥ = a ⋅ ∥v∥ a
∥v∥ = 0 v = 0

V 𝔽 V = ℝn

19
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L1-Norm
• Norm: measure of the “length” of a vector
• L1-Norm: We denote the L1-norm with

such that for a vector  

•
Example: Let , then 

∥ ⋅ ∥1 : ℝn → ℝ
v = (v1, v2, …, vn)

∥v∥1 =
n

∑
i=1

|vi|

v = (
1

−3
2 ) ∈ ℝ3

∥v∥1 = (1 + 3 + 2) = 6

20https://en.wikipedia.org/wiki/Lp_space
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L2-Norm
• Norm: measure of the “length” of a vector
• L2-Norm: We denote the L2-norm with  such that for 

a vector  

•
Example: Let , then 

∥ ⋅ ∥2 : ℝn → ℝ
v = (v1, v2, …, vn)

∥v∥2 =
n

∑
i=1

(vi)2

v = (
1

−3
2 ) ∈ ℝ3

∥v∥2 = (12 + (−3)2 + 22) = 14

21https://en.wikipedia.org/wiki/Lp_space
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Loss functions
• A loss function is a function that takes as input two vectors

and as output measures the distance between these two
 uses a norm to measure the distance 
 L1-Loss uses the L1-norm, L2-Loss uses the L2-norm

• L1-Loss: The L1-Loss between two vectors  is 
defined as 

• L2-Loss: The L2-Loss between two vectors  is 
defined as 

→
→

v, w ∈ ℝn

L1(v, w) = ∥v − w∥1 = Σn
i=1|vi − wi|

v, w ∈ ℝn

L2(v, w) = ∥v − w∥2 = (v1 − w1)2 + … + (vn − wn)2

22
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Outlook

23(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf)

17% cat
13% dog
70% deer

Loss
Neural 

Network
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Outlook

The elements of the matrix  are called 
weights and they determine the prediction 
of our network. 

W

24(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf)

17% cat
13% dog
70% deer

Loss
W ⋅ x

W ∈ ℝn×m
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Outlook

How can we get an accurate matrix 
to minimize the loss? 

W

25(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf)

17% cat
13% dog
70% deer

Loss
W ⋅ x

W ∈ ℝn×m
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Outlook

Gradient Descent: Method to approximate 
the best values for the weights

(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 26

17% cat
13% dog
70% deer

Loss
W ⋅ x

W ∈ ℝn×m
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Calculus
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Derivatives
• Well known: Scalar derivatives, i.e. derivatives of

functions 
• Matrix calculus: Extension of calculus to higher

dimensional setting, i.e. functions like , 
,  and  for 

• Actual calculus we use is relatively trivial, but the notation
can often make things look much more difficult than they
are.

f : ℝ → ℝ

f : ℝn → ℝ
f : ℝ → ℝn f : ℝn → ℝm f : ℝn×m → ℝ
n, m ∈ ℕ

29
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Overview
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Setting Derivative Notation

Scalar derivative

Gradient

Gradient

Jacobian

f : ℝ → ℝ

f : ℝn → ℝ

f : ℝn×m → ℝ

f : ℝn → ℝm

f′ (x)

∇f (x)

∇f (x)

Jf
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Scalar derivatives
• Setting:

• Notation:  or 

• Derivative: Derivative of a function at a chosen input
value is the slope of the tangent line to the graph of the
function at that point.

f : ℝ → ℝ

f′ (x)
df
dx

31https://en.wikipedia.org/wiki/Derivative#/media/File:Tangent_to_a_curve.svg
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Derivation Rules
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Common functions Derivative

f (x) = c for c ∈ ℝ

f (x) = x

f (x) = xn for n ∈ ℕ

f (x) = ex

f (x) = ln(x)

f (x) = sin(x)

f (x) = cos(x)

f′ (x) = 0

f′ (x) = 1

f′ (x) = n ⋅ xn−1

f′ (x) = ex

f′ (x) =
1
x

f′ (x) = cos(x)

f′ (x) = − sin(x)
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Derivation Rules
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Rule Function Derivative

Sum rule

Difference rule

Multiplication by 
constant

Product rule

Quotient rule

Chain rule

f (x) + g(x)

f (x) − g(x)

f (x) ⋅ g(x)

f (x)
g(x)

f (g(x))

f′ (x) + g′ (x)

f′ (x) − g′ (x)

f′ (x) ⋅ g(x) + f (x) ⋅ g′ (x)

f′ (x) ⋅ g(x) − f (x) ⋅ g′ (x)
(g(x))2

f′ (g(x)) ⋅ g′ (x)

c ⋅ f (x) c ⋅ f′ (x)
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Multivariate functions f : ℝn → ℝ
Multivariate Function 

f : ℝn → ℝ
Gradient
∇f : ℝn → ℝn

∇f : x → ∇f(x) =

∂f(x)
∂x1

∂f(x)
∂x2

⋮
∂f(x)
∂xn

Partial derivative

34
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Multivariate functions  f : ℝn×m → ℝ
Multivariate Function 

f : ℝn×m → ℝ
Gradient

∇f : ℝn×m → ℝn×m

∇f : x → ∇f (x) =

∂f(x)
∂x11

∂f(x)
∂x12

… ∂f(x)
∂x1m

∂f(x)
∂x21

∂f(x)
∂x22

… ∂f(x)
∂x2m

⋮
∂f(x)
∂xn1

∂f(x)
∂xn2

… ∂f(x)
∂xnm

35
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Gradient – Example 1

36

𝑓(𝑥, 𝑦) = 3𝑥2𝑦 ∇𝑓(𝑥, 𝑦) = [
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
,

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 ]

𝜕
𝜕𝑥

3𝑦𝑥2 = 3𝑦
𝜕

𝜕𝑥
𝑥2 = 3𝑦2𝑥 = 6𝑦𝑥

𝜕
𝜕𝑦

3𝑥2𝑦 = 3𝑥2 𝜕
𝜕𝑦

𝑦 = 3𝑥2 𝜕𝑦
𝜕𝑦

= 3𝑥2 × 1 = 3𝑥2

∇𝑓(𝑥, 𝑦) = [
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
,

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 ] = [6𝑦𝑥,  3𝑥2]

https://www.zhihu.com/question/36301367



I2DL: Prof. Dai

Gradient – Example 2

𝑔(𝑥, 𝑦) = 2𝑥 + 𝑦8

𝜕𝑔(𝑥, 𝑦)
𝜕𝑦

=
𝜕2𝑥
𝜕𝑦

+
𝜕𝑦8

𝜕y
= 0 + 8𝑦7 = 8𝑦7

𝜕𝑔(𝑥, 𝑦)
𝜕𝑥

=
𝜕2𝑥
𝜕𝑥

+
𝜕𝑦8

𝜕𝑥
= 2

𝜕𝑥
𝜕𝑥

+ 0 = 2 × 1 = 2

∇𝑔(𝑥, 𝑦) = [2, 8𝑦7]

37https://www.zhihu.com/question/36301367
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Vector-valued functions
Vector-Valued 

function
Jacobian Matrix

f : ℝn → ℝm

Jf : ℝn → ℝm×n

38

x → Jf (x) =

∂f1(x)
∂x1

∂f1(x)
∂x2

… ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

… ∂f2(x)
∂xn

⋮ ⋮ ⋱ ⋮
∂fm(x)

∂x1

∂fm(x)
∂x2

…
∂fm(x)

∂xn

f : x =

x1
x2
⋮
xn

⟶

f1(x)
f2(x)

⋮
fm(x)
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Jacobian Matrix – Example 3
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Assume that  with  where 

  and .

Calculate Jacobian matrix:

f : ℝ2 → ℝ2 f(x, y) = (f1(x, y)
f2(x, y))

f1(x, y) = 3x2y f2(x, y) = 2x + y8

Jf(x) =

∂f1(x, y)
∂x

∂f1(x, y)
∂y

∂f2(x, y)
∂x

∂f2(x, y)
∂y

= (6xy 3x2

2 8y7)



I2DL: Prof. Dai

Single Variable Chain Rule
Setting: We are given the function h(x) = f(g(x)).
Task: Compute the derivative of this function with chain rule. 

1. Introduce the intermediate variable: Let  be the intermediate 
variable.

2. Compute individual derivatives:  and 

3. Chain rule:

4. Substitute intermediate variables back

u = g(x)

df
du

dg
dx

=
du
dx

dh
dx

=
df
du

⋅
du
dx

40
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Single Variable Chain Rule: Example
Example: Let .
Task: Compute the derivative of this function with chain rule. 
Observation: Here,  with  and .

1. Introduce the intermediate variable: Let  be the intermediate variable.

2. Compute individual derivatives:  and 

3. Chain rule:

4. Substitute intermediate variables back:

h(x) = sin(x2)

h(x) = f (g(x)) f (x) = sin(x) g(x) = x2

u = x2

df
du

= cos(u)
dg
dx

=
du
dx

= 2x

dh
dx

=
df
du

⋅
du
dx

= cos(u) ⋅ 2x

dh
dx

= cos(u) ⋅ 2x = cos(x2) ⋅ 2x

41
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Total Derivative Chain Rule

42

General Formalism: 

∂f(x, u1(x), …, un(x))
∂x

=
∂f
∂x

+
∂f

∂u1

∂u1

∂x
+

∂f
∂u2

∂u2

∂x
+ … +

∂f
∂un

∂un

∂x

=
∂f
∂x

+
n

∑
i=1

∂f
∂ui

∂ui

∂x
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Probability Theory

44
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Probability space (Ω, ℱ, ℙ)
A probability space consist of three elements :
• Sample space : The set of all outcomes of a random experiment.
• Event Space : A set whose elements  (called events) are subsets of .
• Probability measure : A function  that satisfies the following 

three properties:
1.  for all 
2.

3.  for  and disjoint events 

 The probability space provides a formal model of a random experiment.

(Ω, ℱ, ℙ)
Ω

ℱ A ∈ ℱ Ω
ℙ ℙ : ℱ → [0, 1]

ℙ(A) ≥ 0 A ∈ ℱ
ℙ(Ω) = 1

ℙ (
n

⋃
i=1

Ai) =
n

∑
i=1

ℙ(Ai) n ∈ ℕ A1, A2, …An ∈ ℱ

→

46
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Probability space: Example
A probability space consists of three elements: 
• Sample space : The set of all outcomes of a random experiment.
• Event Space : A set whose elements  (called events) are subsets of .
• Probability measure : A function  that satisfies the following three properties: (…) 

Example: Tossing a six-sided die
• Sample space: 
• Event space: , ,

• Probability measure  with ,  and in the case of  we know that 
.

• Example event space  Possible probability measure are

1.

2.  and . 

(Ω, ℱ, ℙ)
Ω

ℱ A ∈ ℱ Ω
ℙ ℙ : ℱ → [0, 1]

Ω = {1,2,3,4,5,6}
ℱ1 = {∅, Ω} ℱ2 = 𝒫(Ω)

ℱ3 = {∅, A1 = {1,3,5}, A2 = {2,4,6}, Ω = {1,2,3,4,5,6}}
ℙ : ℱ → ℝ ℙ(∅) = 0 ℙ(Ω) = 1 ℱ3

ℙ(A1) + ℙ(A2) = 1
ℱ3 :

ℙ1(A1) =
1
2

= ℙ1(A2)

ℙ2(A1) =
1
4

ℙ2(A2) =
3
4

47https://images.app.goo.gl/GMfyoXi9trZgqecQ8
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Random variable
• A random variable is a function defined on the

probability space which maps from the sample space
to the real numbers, i.e.

. 
• We distinguish between discrete and continuous

random variables.

X : Ω → ℝ

48
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• A random variable is a function defined on the probability space which maps from
the sample space to the real numbers, i.e. . 

Example: Tossing a fair six-sided die

• Underlying experiment: , , 

• Random variable : Number that appears on the die,
 discrete random variable

• Example: One element in  is . Then . 
• Probability measure :

X : Ω → ℝ

Ω = {1,2,3,4,5,6} ℱ = 𝒫(Ω) ℙ({x}) =
1
6

∀x ∈ Ω

X X : Ω → {1,2,3,4,5,6}
⟹

Ω ω = 4 X(ω) = 4
ℙ

ℙ(X = 4) = ℙ({ω ∈ Ω : X(ω) = ω = 4}) = ℙ({4}) =
1
6

Random variable

49https://images.app.goo.gl/GMfyoXi9trZgqecQ8

discrete
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Random variable
• A random variable is a function defined on the probability space which maps from the

sample space to the real numbers, i.e. . 

Example: Flipping a fair coin two times
• Underlying experiment: , 

 and 

• Random variable : number of heads that appeared in the two flips,
 discrete random variable

• Example: One element in  is . Then . 
• Probability measure :

X : Ω → ℝ

Ω = {(H, H ), (H, T ), (T, H ), (T, T )}
ℱ = 𝒫(Ω) ℙ({ω}) =

1
4

∀ω ∈ Ω

X X : Ω → {0,1,2}
⟹

Ω ω = (T, H ) X(ω) = 1
ℙ

ℙ(X = 1) = ℙ({ω ∈ Ω : X(ω) = 1}) = ℙ({(H, T ), (T, H )}) =
1
2

50

discrete

https://images.app.goo.gl/iWASUMEWQ1c8NrVUA
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Random variable
• A random variable is a function defined on the probability space which

maps from the sample space to the real numbers, i.e. . 

Example: radioactive decay
• Underlying experiment: , ,  is the Lebesgue 

measure
• Random variable : indicating amount of time that it takes for a radioactive

particle to decay,   continuous random variable
• Probability measure : is defined on the set of events  and 

is now used for random variables as follows: 

X : Ω → ℝ

Ω = ℝ≥0 ℱ = ℬ(Ω) ℙ = λ

X
X : ℝ≥0 → ℝ≥0 ⟹

ℙ ℱ

ℙ(a ≤ X ≤ b) = ℙ({ω ∈ Ω : a ≤ X(ω) ≤ b})

51

Continuous



I2DL: Prof. Dai

Probability measures 
 specify the probability measures with alternative 

functions (CDF, PDF and PMF) 
⟹

52

Random 
Variable

Discrete
Cumulative distribution function 

(CDF)
Probability mass function 

(PMF)

Continuous
Cumulative distribution function 

(CDF)
Probability distribution 

function (PDF)

FX(x) = ℙ(X ≤ x)

FX(x) = ℙ(X ≤ x)

pX(x) = ℙ(X = x)



I2DL: Prof. Dai

Cumulative Distribution Function
• A cumulative distribution function (CDF) of a random variable  is

a function  which is defined as

• Properties: Per definition, it satisfies the following properties:
1.
2.

3.

4.

X
FX : ℝ → [0,1]

FX(x) = ℙ(X ≤ x)

0 ≤ FX(x) ≤ 1
lim

x→−∞
FX(x) = 0

lim
x→∞

FX(x) = 1

∀x ≤ y ⟹ FX(x) ≤ FX(y)

53[Figure: http://cs229.stanford.edu/section/cs229-prob.pdf]

A sample CDF
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Discrete Case: Probability Mass Function
• The probability mass function of a random variable is a

function  defined as

• Properties: Again, we can derive some properties:
1.
2.

pX : Ω → ℝ

0 ≤ pX(x) ≤ 1

∑
x∈Ω

pX(x) = 1

54

pX(x) = ℙ(X = x)

A sample PMF

[Figure: https://en.wikipedia.org/wiki/Probability_mass_function]
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Discrete Example: Sum of 2 Dice Rolls
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Continuous case: Probability Density Function
• Continuous case: For some continuous random variables, the CDF 

is differentiable everywhere. Then we define the probability density function 
as the function  with 

• Properties:
1.

2.

3.

FX(x)

fX(x) : Ω → ℝ

fX(x) =
dFX(x)

dx

fX(x) ≥ 0

∫
∞

−∞
fX(x)dx = 1

∫
b

a
fX(x)dx = FX(b) − FX(a)

56

Note: the value 
of a PDF at 
any given point 
x is not the 
probability of 
that event!

[Figure:https://www.math24.net/probability-density-function/]
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Expectation of a random variable
• Idea: “weighted average” of the values that the random variable

can take on
• Discrete setting: Assume that  is a discrete random variable 

with PMF . Then the expectation of  is given by

• Continuous setting: Assume that  is a continuous random 
variable with PDF . Then the expectation of  is given by

X
pX(x) X

𝔼[X] = ∑
x∈Ω

x ⋅ pX(x)

X
fX(x) X

𝔼[X] = ∫
∞

−∞
x ⋅ fX(x) dx

57
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Expectation: Example
• Discrete setting: Assume that  is a discrete random variable with PMF . 

Then the expectation of  is given by

Example: Tossing a six-sided die

X: represents the outcome of the toss

 

X pX(x)
X

𝔼[X ] = ∑
x∈Ω

x ⋅ pX(x)

Ω = {1,2,3,4,5,6}

pX(x) = ℙ(X = x) =
1
6

∀x ∈ Ω

𝔼[X ] = ∑
x∈Ω

x ⋅ pX(x) = 1 ⋅
1
6

+ 2 ⋅
1
6

+ … + 5 ⋅
1
6

+ 6 ⋅
1
6

= 3.5

58https://images.app.goo.gl/GMfyoXi9trZgqecQ8
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Expectation of a random variable

Properties: We encounter several important properties 
for the expectation, i.e.

1.  for any constant 
2. Linearity:  for any 

constants

𝔼[a] = a a ∈ ℝ
𝔼[aX + bY ] = a ⋅ 𝔼[X] + b ⋅ 𝔼[Y ]
a, b ∈ ℝ

59
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Variance of a random variable
• Idea: The variance of a random variable is a measure

how concentrated the distribution of a random variable
 is around its mean.

• Definition: The variance is defined as
X

Var(X) = 𝔼[(X − 𝔼[X])2]
= 𝔼[X2] − 𝔼[X]2

60https://en.wikipedia.org/wiki/Normal_distribution
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Definition: The variance is defined as 

Example: Tossing a fair six-sided die 
, X: represents the outcome of the toss

, 

Var(X ) = 𝔼[(X − 𝔼[X ])2] = 𝔼[X2] − 𝔼[X ]2

Ω = {1,2,3,4,5,6}

pX(x) = ℙ(X = x) =
1
6

∀x ∈ Ω

𝔼[X ] = 3.5 𝔼[X ]2 = 12
1
4

𝔼[X2] = ∑
x∈Ω

x2 ⋅ pX(x) = 12 ⋅
1
6

+ 22 ⋅
1
6

+ … + 52 ⋅
1
6

+ 62 ⋅
1
6

= 15
1
6

Var(X ) = 𝔼[X2] − 𝔼[X ]2 = 15
1
6

− 12
1
4

=
35
12

≈ 2.91

Variance of a random variable

61https://images.app.goo.gl/GMfyoXi9trZgqecQ8
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Variance of a random variable

• Properties: The variance has the following
properties, i.e.

1.  for any constant
2.

Var(a) = 0 a ∈ ℝ
Var(a ⋅ X + b) = a2 ⋅ Var(X)

62https://en.wikipedia.org/wiki/Normal_distribution
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Distribution Parameter & 
Notation PDF or PMF Mean Variance Illustration

Bernoulli 
distribution
(Discrete)

Binomial 
distribution
(Discrete)

Uniform 
distribution

(Continuous)

Normal 
distribution

(Continuous)

𝔼[X ] = n ⋅ p

𝔼[X ] = μ

X ∼ Ber(p)

X ∼ Bin(n, p)

X ∼ U(a, b)

X ∼ 𝒩(μ, σ2)

0 ≤ p ≤ 1

n ∈ ℕ, p ∈ [0,1]

−∞ < a < b < ∞

μ ∈ ℝ, σ2 ∈ ℝ≥0

Var(X ) =
1

12
(b − a)2

Var(X ) = σ2

Var(X ) = np(1 − p)

Var(X ) = p(1 − p)pX(k) = pk(1 − p)1−k

𝔼[X ] =
1
2

(a + b)

pX(k) = (n
k)pk(1 − p)n−k

fX(x) = {
1

(b − a) x ∈ [a , b]

0 else

fX(x) =
1

σ 2π
e− 1

2 ( x − μ
σ )2

𝝁

𝝈

a b

0 n

0 1

p

1-

Standard Probability Distributions

63

𝔼[X ] = p
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