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Basic Notation

« Vector: We call an element of R" a vector with 7 entries.

- Elements of a vector: The ith element of a vector v € R" is denoted
by v; € R.

 Matrix: We call an element of R™" a matrix with n rows and m
columns.

« Elements of a matrix: For A € R™™_ we denote the element at the
ith row and jth column by 4;; € R.

* Transpose: The transpose of a matrix results from “flipping” rows and
columns. We denote the transpose of a matrix A € R™" by

AT € R™" Similarly, we use transposed vectors.
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Vector

An n-dimensional vector describes an element in an n-dimensional space

Vector
Operations:
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(V)
V2
=| " |1eR"
\ Vn )
Addition Subtraction Sfca.llar. Dot Product
Multiplication

https://projector.tensorflow.org/
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Vector

Vector Operations

Operations:

Fora, b € R" we have

a+b=
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\a” + bn)

Subtraction

Scalar
Multiplication

Dot Product

e R”




Vector Operations

Vector
Operations:

Addition

Fora,b € R"we have

a—>b
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Scalar
Multiplication

Dot Product

/al _ bl\
_|a—b,
%~ by




Vector
Operations:

Vector Operations

Addition

Subtraction

Fora € R”,c € R we have
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C-Cl2

\C°Cln)

e R"

Scalar
Multiplication

Dot Product




Vector
Operations:

Definition: For a, b € R”, the dot product is defined as follows:

[2DL: Prof. Dai

Vector Operations

Addition

Subtraction

Scalar
Multiplication

a-b=a’ b
=a,-by+a, - by+...+a

=iai-bi€|R
i=1

Dot Product
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Vector Operations

Vector_ Addition Subtraction S.C?"ar. Dot Product
Operations: Multiplication

Properties:
. Commutative:a-b =b-a

- Geometric interpretation:
a-b=|lall-|b]| - cos(0)

+ Orthogonality: Two non-zero vectors are
orthogonal to each other <= a-b =0

0 = arccos(z+y/1z11yl)
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Vector Operations

Dot Product

Vector .. : Scalar
Operations: Addition Subtraction Multiplication
Properties:

. Commutative:a-b=b-a
- Geometric interpretation:

a-b=|lall -|[b]l - cos(8)

+ Orthogonality: Two non-zero vectors are
orthogonal to each other <= a-b =0
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UV = |®||V|cosf = (4)(4) cos 180° = —16

180°
P\;; u

@T=—16 =

12

~



Matrix

A matrix A € R™ is denoted as

Matrix
Operations:
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i

a12 oo e al

m

6122 e o o Cl2m
: . . = Rn)(m

a, ... d

nm

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product
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Matrix Matrix-vector
Operations: Multiplication

Matrix

Matrix-matrix Hadamard
Multiplication Product

 Multiplication of matrix with a vector is defined as follows:

ayp dpp

a,, a
ForAe R™™ pbeR™A-b= ,21 ,22

a1 App

A1 (bl\
Ao . b2

Aym bm )

(Clll'b1+a12’b2+...+a1m'bm
a21-b1+a22-b2+...+a2m-bm

a, -by+a,-by+...+a,,-b,

+ Attention: The respective dimension have to fit, otherwise the multiplication is not well-defined.

= A - b =c

—— ——

nxXm mx1 nx1

1 2 ) 1 2 ) 8
_Example:A € R¥*,h e R®withA = ( 3 4 andb=<3>=> 3 4 -<3)= 18
56 5 6 28
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/

e R”
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Matrix Operations

Matrix Matrix-vector Matrix-matrix Hadamard
Operations: Multiplication Multiplication Product

+ Similar, the multiplication of two matrices with each other is defined as follows:
ForA € R™" B € R™! we have

(
all a12 e Cllm bll b12 e bll cll C12 . cll
dyy Ay ... 4y b,y b ... b Cyy Cpp  .-n Oy
A-B=]| . . . - .21 .22 .2l =1 . ) . “1 € R™ where
Ay Aup  --- Ay bml bm2 bml) Ca1 Cua -+ Gy

nm
Cij = Zaik‘bkj =a; -bjjtap-by+...+ay, by,
k=1

. Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices A € R™" B € R™" we
have A-B#B-A
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Matrix

Operations:

Matrix Operations

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product

« The Hadamard product is the element wise product of two matrices. For
two matrices of the same dimension A, B € R™ it is given by

AOB=

(ay,
253

anl

\

\ (bn

A
Aom by,
anm} b |

)
bym (011 - byy
by | _ | @21+ b2
bnm) \anl ) bnl

. )
alm blm
Aoy b2m
Qym - bnm}

— For all matrix operations, it is important to check the dimensions!

I2DL: Prof. Dai
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Tensor

- Definition: A tensor is a multidimensional array and a generalization of the

concepts of a vector and a matrix.

(1) ) 4 19 8
1.
, 16 3 5
s Row Vector Column Vector MATRIX

(shape 1x3) (shape 3x1)

[2DL: Prof. Dai

TENSOR
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Tensors in Computer Vision

color image is 3rd-order tensor

Tensors are used to
represent RGB
Images.

HX WX RGB

Source: https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

[2DL: Prof. Dai
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Norm

Norm: measure of the “length” of a vector

Definition: A norm is a non-negative function || - || : V = R
which is defined by the following the properties for elements
v,weV:

1. Triangle inequality: ||[v + w]|| < ||v|| + ||w]|

2. |la-v|| =a- ||v|| forascalar a

3.|lv| =0ifandonlyifv =0
(*V is a vector space over a field [; in our case we have V = R")
Remark: Every such function defines a norm on the vector space.

Examples: L1-norm, L2-norm



L1-Norm

 Norm: measure of the “length” of a vector

. L1-Norm: We denote the L1-norm with || - |[|; : R" = R
such that for a vector v = (v{, v,, ..., V)
n

vl = ) v

i=1
|

Example:Letv=| -3 | € R3. then
2

il =(1+3+2) =6

I2DL: Prof. Dai
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L2-Norm

* Norm: measure of the “length” of a vector

« L2-Norm: We denote the L2-norm with || - ||, : R" — R such that for
avectorv = (v, vy, ..., V,)

Wl =4/ D, 0
i=1

1
Example: Letv =| —3 | € R3. then

. 2
vl = /(12 + (=37 +22) = /13

I2DL: Prof. Dai
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L oss functions

« Aloss function is a function that takes as input two vectors
and as output measures the distance between these two
— uses a norm to measure the distance

— L1-Loss uses the L1-norm, L2-Loss uses the L2-norm
. L1-Loss: The L1-Loss between two vectors v, w € R" is
defined as L;(v,w) = ||[v —wl|; = Z_,|v; — wj|

. L2-Loss: The L2-Loss between two vectors v, w € R" is
defined as

Lo, w) = [Iv = wlly = /0 = w2 o+ (5, = w,)?




Outlook

17% cat

Network 13% dog 'm

70% deer

TENSOR

I2DL: Prof. Dai (http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 23



Outlook

W - X 17% cat
T 13% dog —'m
WeR 70% deer

The elements of the matrix W are called

weights and they determine the prediction
of our network.

I2DL: Prof. Dai (http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 24



Outlook

W - X 17% cat

— 13% dog _’m

W e R™" 70% deer

How can we get an accurate matrix W
to minimize the loss?

I2DL: Prof. Dai (http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 25



Outlook

W - X 17% cat
X)L iy —{EB
WeR 70% deer

Gradient Descent: Method to approximate
the best values for the weights

I2DL: Prof. Dai (http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 26



Calculus

[2DL: Prof. Dai



I2DL: Prof. Dai

Overview

Calculus

Scalar derivatives
Gradient
Jacobian Matrix
Chain Rule
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Derivatives

 Well known: Scalar derivatives, i.e. derivatives of
functionsf: R — R

* Matrix calculus: Extension of calculus to higher
dimensional setting, i.e. functions like f : R" — R,
fiR>R"f:R" > R"andf: R™" = R for
n,me N

* Actual calculus we use is relatively trivial, but the notation

can often make things look much more difficult than they
are.
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Overview

Setting Derivative Notation
JTR=R Scalar derivative S )
TR R Gradient Vf(x)
fiR™M 5 R Gradient V()
fiRT = R"™ Jacobian Jy
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Scalar derivatives
. Setting: f: R - R

Notation: f'(x) or —
dx

* Derivative: Derivative of a function at a chosen input
value is the slope of the tangent line to the graph of the
function at that point.

I2DL: Prof. Dai
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Derivation Rules
f(x)=cforc eR f(x)=0
fx)=x S =1
fx)=x"forneN f(x)=n-x""1
fx) =¢e* fx)=¢e"
1
f(x) = In(x) J'x) = -
f(x) = sin(x) f'(x) = cos(x)
J(x) = cos(x) f'x) = = sin(x)

I2DL: Prof. Dai
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Derivation Rules

Sum rule J) + gx) f(x)+g'(x)
Difference rule | f(x) — g(x) fx)—g'(x)
Multiplication by , L
constant ¢ 7 A
Product rule Jx) - g(x) f'x) - gx) +f(x)-g'(x)
Quotient rule f(—x) 00 - 800 = /) - g10)
g(x) (g(x))?
Chain rule f(g(x)) f(gx) - g'(x)

I2DL: Prof. Dai
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Multivariate functions f : R" — R

Multivariate Function Gradient
fR"> R Vf:R" > R"

Vf:x—> Vf(x)=| o

[2DL: Prof. Dai
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Multivariate functions f: R"" — R

Multivariate Function
fiR™m 5 R
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Gradient

Vf: Rn)(m N Rn)(m

:x = Vfx) =

(of(x)

of(x)

axll

of(x)

0x12

9f(x)

0x21

of(x)

ox 22

of(x)

\ axnl

a.xnz

If(x) )

axlm

of(x)

ax2m

af(x)
X, )
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Gradient — Example 1

Surface:

z=fx,y)

of(x,y) af(x,y) ]

f(x,y) =3x%y Vf(x,y)=[ oy

0 0
—3yx? =3y—x? =3y2x = 6yx
o0x 0x
0 0 0
—3x%y =3x2—y = 3x2—y =3x%x 1 = 3x?
dy dy dy
of(x,y) df(x,y)
V£(x,y)= : = [6yx, 3x?
) = | L2 22| o, 2

https://www.zhihu.com/question/36301367 36
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Gradient — Example 2

g(x, y) =2x + y8

dg(x,y)  02x N dy® 0x

0x ox ox ox

oy dy  dy

Surface:

2=1(x, ) Vg(x,y) = (2, 8y

https://www.zhihu.com/question/36301367

=2—+4+0=2%x1=2

0
+ =0+8y’ =8y’
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Vector-valued functions

Vector-Valued
function

f:R" - R”
(x;) (f,(x))
Xy Hx)

f:x= Sl

\xn / \fm(—x)}

Jacobian Matrix

Jf: R" —» Ran

X — Jf(x) =

(o) ofiw)
ox 1 ox 2
ofHh(x)  IfH(x)
0x; 0x,
(X))  9f, (%)
\ ox 1 ox 2

of;(x) )

ox,

(%)
ox,

0fy(X)
ox ” )
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Jacobian Matrix — Example 3

Assume that f : R? > R? with f(x, y) = (fl(x, Y)) where
Hx,y)
fi(x,y) = 3x%y and f,(x,y) = 2x + y°.

Calculate Jacobian matrix:

(ofi(x,y)  Ofi(x,y) )

0 6xy 3x?
J f(.X') — of (j: % — Y
(%, y) - dh(x,Y) 2 8y’

\ 0x dy )
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Single Variable Chain Rule

Setting: We are given the function h(x) = f(g(x)).
Task: Compute the derivative of this function with chain rule.

1. Introduce the intermediate variable: Let u = g(x) be the intermediate

variable.
df dg du
2. Compute individual derivatives: — and =
du dx dx
dh  df du
3. Chain rule: = .
dx du dx

4. Substitute intermediate variables back

I2DL: Prof. Dai
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Single Variable Chain Rule: Example

Example: Let h(x) = sin(x?).
Task: Compute the derivative of this function with chain rule.
Observation: Here, h(x) = f(g(x)) with f(x) = sin(x) and g(x) = x?.

1. Introduce the intermediate variable: Let u = x2 be the intermediate variable.

d
2. Compute individual derivatives: — = cos(u) and s _ = 2Xx
du dx dx
_ dh df du
3. Chain rule: = . = cos(u) - 2x
dx du dx
h
4. Substitute intermediate variables back: i = cos(u) - 2x = cos(x?) - 2x
X

I2DL: Prof. Dai
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Total Derivative Chain Rule

General Formalism:

of (x, uy(x), ..., u,(x)) _of N dof Ou, N of du, N of ou,
0x  ox ou, ox Ou, ox  Ou, Ox

df Ou;
Z ou; ()x

I2DL: Prof. Dai 42
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Probability space (Q, F P)

A probability space consist of three elements (Q2, &, P):
. Sample space 2: The set of all outcomes of a random experiment.
. Event Space F: A set whose elements A € & (called events) are subsets of €.

. Probability measure P: A function P : & — [0, 1] that satisfies the following
three properties:
1.P(A) > OforallA € F
2.P(Q) = 1

3.P <UAi> = Z P(A;) forn € N and disjoint events A, A,, ... A, € F
i=1 i=1

I2DL: Prof. Dai
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Probability space: Example

A probability space consists of three elements: (Q2, #, P)
Sample space (2: The set of all outcomes of a random experiment.
Event Space & : A set whose elements A € F (called events) are subsets of 2.
Probability measure P: A function P : # — [0, 1] that satisfies the following three properties: (...)

Example: Tossing a six-sided die
. Sample space: Q = {1,2,3,4,5,6}
- Event space: ¥ | = {@,Q}, F, = QJ(Q),
Fi=1{0,A, = {1,3,5}, A2 ={2,4,6},Q2={1,2,3,4,5,6}}

- Probability measure P : & — R with P(g) = 0, P(€2) = 1 and in the case of & ; we know that
PA,) +PA, = 1.

- Example event space F ; : Possible probability measure are

1
1
I2DL: Prof. Dai
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Random variable

 Arandom variable is a function defined on the

probability space which maps from the sample space
to the real numbers, i.e.

X:Q - R.

* We distinguish between discrete and continuous
random variables.

I2DL: Prof. Dai
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Random variable

Example: Tossing a fair six-sided die @

1
. Underlying experiment: Q2 = {1,2,3,4,5,6}, ¥ = L(Q), P({x}) = g‘v’x e Q

- Random variable X: Number that appears on the die, X : Q — {1,2,3,4,5,6}
— discrete random variable

- Example: One element in Qis @ = 4. Then X(w) = 4.
- Probability measure P:

PX =4)=P({w € Q: X(w) = o = 4}) = P({4}) :%

I2DL: Prof. Dai 49



Random variable

J

Example: Flipping a fair coin two times ¢
. Underlying experiment: Q = {(H,H),(H,T),(T,H),(T,T)}, .

F =PQ)and P({w}) = %‘v’a) e Q

- Random variable X: number of heads that appeared in the two flips, X : Q — {0,1,2}
— discrete random variable

- Example: One element in Qis w = (T, H). Then X(w) = 1.
- Probability measure P:

1
P(X = 1) = P({w e Q: X(a)) — 1}) = P({(H,T), (T,H)}) — E

I2DL: Prof. Dai
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Random variable

Example: radioactive decay
. Underlying experiment: Q = R, & = 9B(Q), P = Ais the Lebesgue
measure B
- Random variable X: indicating amount of time that it takes for a radioactive
particle to decay, X : R, = R, == continuous random variable

- Probability measure P: is defined on the set of events & and

IS now used for random variables as follows:
Pa<X<b)=P{weQ:a<Xw)<b})

I2DL: Prof. Dai
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Probability measures

—> specify the probability measures with alternative
functions (CDF, PDF and PMF)

Random
Variable

Cumulative distribution function  Probability mass function

Discrete (CDF) (PMF)
Fy(x) = P(X < x) px(x) = P(X = x)

Cumulative distribution function Probability distribution

Continuous (CDF) function (PDF)
Fy(x) = P(X < x)

I2DL: Prof. Dai
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Cumulative Distribution Function

- A cumulative distribution function (CDF) of a random variable X is
a function Fy : R — [0,1] which is defined as

Fy(x) =P(X < x)
- Properties: Per definition, it satisfies the foIIowmg propertles
1O<FX(x)<1 |

2. lim Fy(x) = o
3. lim Fy(x) = 1 1

4. Vx <y = Fy(x) < Fx(y)

« 3 2 4 0 1 2 5 4 s
A sample CDF

[Figure: http://cs229.stanford.edu/section/cs229-prob.pdf] 53
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Discrete Case: Probability Mass Function

- The probability mass function of a random variable is a
function py : £ — R defined as

px(x) = P(X = Xx)
- Properties: Again, we can derive some properties:
1.0 < py(x) <1

0.51
xeQ 0.2 [ I
$ >
1 3 7

A sample PMF

I2DL: Prof. Dai , - L . .
[Figure: https://en.wikipedia.org/wiki/Probability_mass_function] 54



Discrete Example: Sum of 2 Dice Rolls

0,18
0,14
0,09

0,05

0,00 I
2

[2DL: Prof. Dai

« I

+~ I

PMF
7 8 9 10 11 12

1,00

0,75

0,50

0,25

0,00

CDF

8 9 10 11 12
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Continuous case: Probability Density Function

. Continuous case: For some continuous random variables, the CDF Fy(x)
is differentiable everywhere. Then we define the probability density function
as the function fy(x) : € — R with

dF
fx(&x) = X

dx

- Properties:
L. fx(x) > 0
r OO

2. fx(dx =1

J—o0

b
3. | fx()dx = Fy(b) — Fy(a)

va

-
X

I2DL: Prof. Dai , . : :
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Expectation of a random variable

- ldea: “weighted average” of the values that the random variable
can take on

- Discrete setting: Assume that X is a discrete random variable
with PMF py(x). Then the expectation of X is given by

EX] = ) x py(®)

xeQd
. Continuous setting: Assume that X is a continuous random
variable with PDF fy(x). Then the expectation of X is given by

E[X] = J‘°° X - fyx(x) dx

I2DL: Prof. Dai
57



Expectation: Example

Example: Tossing a six-sided die
Q= {1,2,3,4,5,6)
X: represents the outcome of the toss
1
Px(x) =PX=x) = g‘v’x e Q

1 1 1 1
[E[X]=Zx'pX(x)z1'g+2‘g+---+5'g+6’g

xeQ

[2DL: Prof. Dai

3.5
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Expectation of a random variable

Properties: We encounter several important properties
for the expectation, i.e.

1.[E[a] = a for any constant a € R

2. Linearity: E[aX + bY] = a - E[X] + b - E[Y] for any
constants a, b € R

I2DL: Prof. Dai
rof. Dai 59



Variance of a random variable

 |ldea: The variance of a random variable is a measure
how concentrated the distribution of a random variable
X is around its mean.

« Definition: The variance is defined as
Var(X) = E[(X — E[X])*]

= F[X?] — E[X]?

(pp,a 2 (X)

I2DL: Prof. Dai




Variance of a random variable

F[X] = 3.5, E[X]* = 12% |

1 1 1 1 1
[E[X2]=sz-px(x)=12~g+22-g+...+52'g+62-g=156

Example: Tossing a fair six-sided die
Q=1{1,2,3,4,5,6}, X: represents the outcome of the toss

1
Px(x) = P(X = x) =g‘v’x e Q

xeQl

, , 1 1 35
Var(X) = E[X?] - F[X]? = 15— — 12— = — ~ 291
6 4 12

I2DL: Prof. Dai 61



Variance of a random variable

* Properties: The variance has the following
properties, i.e.
1. Var(a) = O for any constanta € R
2. Var(a - X + b) = a® - Var(X)

(pu, a2 (X)

I2DL: Prof. Dai



Standard Probability Distributions

Distribution | & &rameter& | phe o pyE Variance llustration

Notation

Bernoulli X ~ Ber(p) 0 = pH(L - it
distribution 0 <p <1 P = E(X]=p VarX)=p(-p)
(Discrete) P ! R
0o, 1 .
Binomial X ~ Bin(n, p) .y y o o
distribution  , eN,p e[o,1] ® T (k>P S E[X]=n-p Var(X)=np(l-p) 1 1.
(Discrete) < 2 2 . _,
Uniform X~ U(a,b) Ly € la.b] 1 |
. . . = (b —a) ? E— e — )2
(glstrlbutlon) Lo < m < b < eo Jx() {0 olse E[X]=—(a+b) VarX)=-0k-a) !
ontinuous a b
Normal X~ N(u,oc?) 1 _1(x=u)\? /
distribution | cp 2er,, 75 = Exy =4 Var(X) = o 2
(Continuous) 7 >
I2DL: Prof. Dai
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« http://cs229.stanford.edu/section/cs229-prob.pdf
— Comprehensive Probability Review — recommended!

 https://stanford.edu/~shervine/teaching/cme-106/cheatsheet-

probability

— Quick Overview

* https://www.deeplearningbook.org/contents/prob.html

— Another great resource. Also covers information theory basics.
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