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Today's Outline

« Universal Approximation Theorem

« EXercise 5
— More numpy but structured

output layer
input layer
hidden layer
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Some background info

* You are currently in the numpy heavy part
After exercise 5 there will be less numpy implementations

« Creating exercises is hard
We will take your feedback to heart but we cant implement
everything this semester with our current resources
Feedback is still welcome and important!
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Recap:

« The Pillars of Deep Learning
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Recap: Exercise 4

SVC with linear kernel LinearSVC (linear kernel)

Back to the roots!

sepal width (cm)
sepal width (cm)

Common machine
learning approaches:

sepal length (cm) sepal length (cm)
SVC with RBF kernel

Original points

i
J

- SVM
- Nearest Neighbors

sepal width (cm)

sepal length (cm)

Img src: scikit-learn.org, knowyourmeme “we don't do that here”
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Universal
Approximation
Theorem



Universal Approximation Theorem

Theorem (1989, colloquial)

For any continuous function f on a compact set K, there
exists a one layer neural network, having only a single
hidden layer + sigmoid, which uniformly approximates f to
within an arbitrary e > 0 on K.
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Weighted output from hidden layer




Universal Approximation Theorem

Readable proof:

https./mcneela.dithub.io/machine_learning/2017/03/21/

Universal-Approximation-Theorem.html
(Background: Functional Analysis, Math Major 3rd semester)

Visual proof:
nttp.//neuralnetworksanddeeplearning.com/chap4.ntml
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https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
http://neuralnetworksanddeeplearning.com/chap4.html

A word of warning

Source:

http/blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png
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http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

How deep Is your love

« Shallow
(1 hidden layer)

* Deep
(>1 hidden layer)
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Obvious Questions

e Q: Do we even need deep networks?
A: Yes. Multiple layers allow for more abstraction power
given a fixed computational budget in comparison to a
single layer — better at generalization

e Q: So we just build 100 layer deep networks?
A: Not trivially ;-)
- Constraints: Memory, vanishing gradients, .
- deeper |- working better
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Exercise 5
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Recap: Exercise 4

EX4: EX5
¢ Small dataset « CIFAR10
And simple objective Actual competitive task
« Simple classifier « Modularized Network
Single welght matrix Chain rule rules
« Gradient descent solver » Stochastic Descent

Whole forward pass in memory
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Recap: Exercise 4

X):

class Classifier(Network): s

forward pass of the model.
Classifier of the form y = sigmoid(X % W)

b ray of training data. Each row is a D-dimensional point.
redicted labels for the data in X, shape N x 1

def __init_ (self, num_features=2): —-dimensional array of length N with classification scores.

super(Classifier, self).__init_ ("classifier")

assert self.W is not None, "weight matrix W is not initialized"
self.num_features = num_features # add a column of 1s to the data for the bias term
salf.W = Noha batch_size, = X.shape

e X = np.concatenate((X, np.ones((batch_size, 1))), axis=1)

# save the samples for the backward pass
self.cache = X

def initialize_weights(self, weights=None

Initialize the weight matrix W

:param weights: optional weights for i ion

#
P P . ement the forward pass and return the output of the model. Note #
if weights is not None: . . . .
5 # that you need to implement the function self.sigmoid() for that #
assert weights.shape == (self.num_features + 1, 1), \
"weights for initialization are not in the correct @hape
self.W = weights y = X.dot(self.W)
else: y = self.sigmoid(y)
self.W = 0.001 x np.random.randn(self.num_feat 1,%)
# END OF YOUR CODE #
12DL: Prof. Dai
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New: Modularization

S lass Sigmoid:
Chaln Ru le: : as:eflﬂ(i);it_(self):

pass

af af ad def forward(self, x):

:param x: Inputs, of any shape

dy ad 9y

:return out: Output, of the same shape as x
:return cache: Cache, for backward computation, of the same shape as x

def backward(self, dout, cache):

:return: dx: the gradient w.r.t. input X, of the same shape as X
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* One notebook -
— But along one.

Overview Exercise 5

\U

deadline

Nov 23, 2022 1559:59

J

« Multiple smaller mplementation objectives
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Definition
5 1L
E(,y) = — — yir log (i
@) = ;;[ yir log(§ k)]

where:

« N is again the number of samples

o C'is the number of classes

* ik is the probability that the model assigns for the k'th class when the i'th sample is the input.
oy = Liff the true label of the ith sample is k and 0 otherwise. This is called a one-hot encoding.

Task: Check Formula

Check for yourself that when the number of classes C'is 2, then binary cross-entropy is actually equivalent to cross-entropy.



Outlook Ex6: CIFAR10 again
@

i

Hyperparameters

n_layers =3
Q n_neurons = 512
learning_rate = 0.1

n_layers =3
Q n_neurons = 1024
learning_rate = 0.01

n_layers =5
ﬁ n_neurons = 256
learning rate = 0.1

il
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run optimize()

Parameters
&< Weights
> optimization
> We_ights '
> optimization
=5 Weights
- optimization

22

Score

80%

92%
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See you next week
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