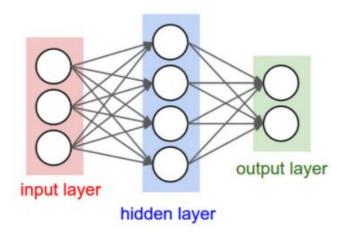


Introduction to Deep Learning (|2DL)Exercise 5: Neural Networks

Today's Outline

- Universal Approximation Theorem
- Exercise 5
 More numpy but structured

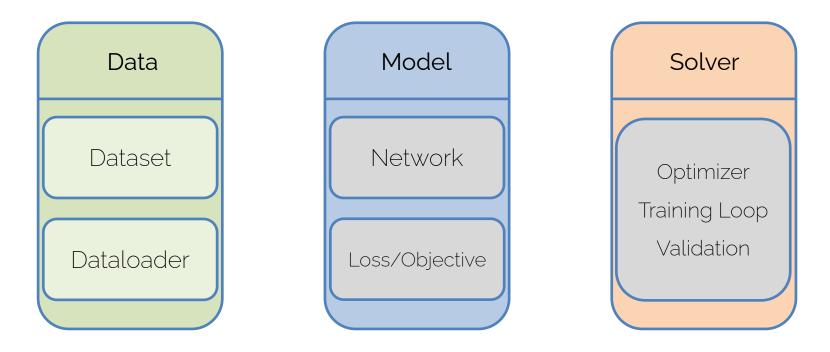


Some background info

• You are currently in the numpy heavy part After exercise 5 there will be less numpy implementations

• Creating exercises is hard We will take your feedback to heart but we can't implement everything this semester with our current resources Feedback is still welcome and important!

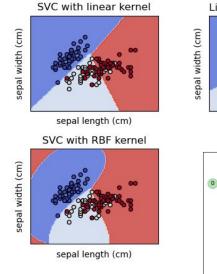
• The Pillars of Deep Learning



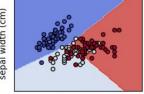
Back to the roots!

Common machine learning approaches:

- SVM
- Nearest Neighbors

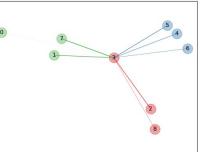


LinearSVC (linear kernel)



sepal length (cm)

Original points

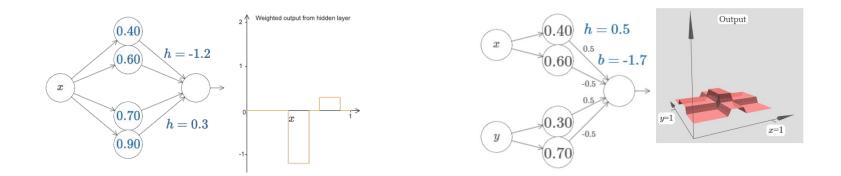


Universal Approximation Theorem

Universal Approximation Theorem

Theorem (1989, colloquial)

For any continuous function f on a compact set K, there exists a one layer neural network, having only a single hidden layer + sigmoid, which uniformly approximates f to within an arbitrary $\varepsilon > 0$ on K.



Universal Approximation Theorem

Readable proof:

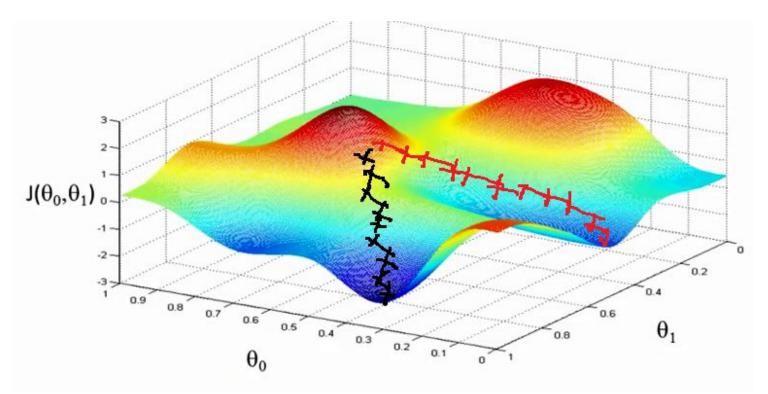
https://mcneela.github.io/machine_learning/2017/03/21/ Universal-Approximation-Theorem.html

(Background: Functional Analysis, Math Major 3rd semester)

Visual proof:

http://neuralnetworksanddeeplearning.com/chap4.html

A word of warning

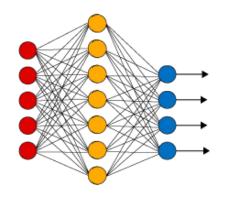


Source:

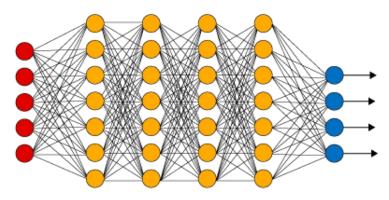
http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

How deep is your love

• Shallow (1 hidden layer)



Deep
 (>1 hidden layer)



Obvious Questions

• Q: Do we even need deep networks?

A: Yes. Multiple layers allow for more abstraction power given a fixed computational budget in comparison to a single layer → better at generalization

- Q: So we just build 100 layer deep networks?
 A: Not trivially ;-)
 - Constraints: Memory, vanishing gradients, ...
 - deeper != working better

Exercise 5

Ex4:

- Small dataset And simple objective
- Simple classifier Single weight matrix

Ex5:

• CIFAR10

Actual competitive task

• Modularized Network Chain rule rules

• Gradient descent solver Whole forward pass in memory • Stochastic Descent

<pre>class Classifier(Network):</pre>	def forward welf X):
Classifier of the form y = sigmoid(X * W)	Performs the forward pass of the model. :paran X: N x Durray of training data. Each row is a D-dimensional point. :return Predicted labels for the data in X, shape N x 1
<pre>definit(self, num_features=2): super(Classifier, self)init("classifier")</pre>	I-dimensional array of length N with classification scores.
<pre>self.num_features = num_features self.W = None</pre>	<pre># add a column of 1s to the data for the bias term batch_size, _ = X.shape X = np.concatenate((X, np.ones((batch_size, 1))), axis=1) # even the event for the helenoid even</pre>
<pre>def initialize_weights(self, weights=None) """ Initialize the weight matrix W</pre>	<pre># save the samples for the backward pass self.cache = X # output Asiable y = None</pre>
:param weights: optional weights for instialization	#### #################################
<pre>if weights is not None: assert weights.shape == (self.num_features + 1, 1), \ "weights for initialization are not in the correct mape self.W = weights</pre>	<pre># that you need to implement the function self.sigmoid() for that # ###################################</pre>
<pre>else: self.W = 0.001 * np.random.randn(self.num_features + 1,1)</pre>	<pre>y = X.dot(self.W) y = self.sigmoid(y)</pre>
	######################################

New: Modularization

Chain Rule:

∂f ∂d ∂d

class Sigmoid: def __init__(self): pass def forward(self, x): :param x: Inputs, of any shape :return out: Output, of the same shape as x :return cache: Cache, for backward computation, of the same shape as x

```
def backward(self, dout, cache):
```

.....

:return: dx: the gradient w.r.t. input X, of the same shape as X

Overview Exercise 5

- One notebook
 - But a long one...

deadline Nov 23, 2022 <u>15:59:59</u>

• Multiple smaller implementation objectives

Definition

$$CE(\hat{y},y) = rac{1}{N}\sum_{i=1}^{N}\sum_{k=1}^{C} \Big[-y_{ik}\log(\hat{y}_{ik})\Big]$$

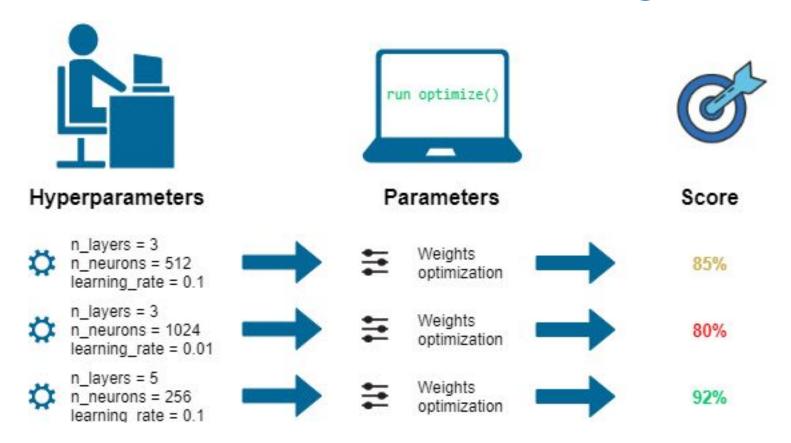
where:

- N is again the number of samples
- C is the number of classes
- + \hat{y}_{ik} is the probability that the model assigns for the k'th class when the i'th sample is the input.
- + $y_{ik} = 1$ iff the true label of the ith sample is k and 0 otherwise. This is called a one-hot encoding.

Task: Check Formula

Check for yourself that when the number of classes C is 2, then binary cross-entropy is actually equivalent to cross-entropy.

Outlook Ex6: CIFAR10 again



See you next week