TUTi

Introduction to

Deep Learning
(I2DL)

Exercise 5 Neural Networks

12D Prof. Dai

Today's Outline

« Universal Approximation Theorem

« EXercise 5
— More numpy but structured

output layer
input layer
hidden layer

12D Prof. Dai 2

Some background info

* You are currently in the numpy heavy part
After exercise 5 there will be less numpy implementations

« Creating exercises is hard
We will take your feedback to heart but we cant implement
everything this semester with our current resources
Feedback is still welcome and important!

12D Prof. Dai

Recap:

« The Pillars of Deep Learning

-

Data

\

Dataset

\L

Dataloader

-

Model

o\

_

J

12D Prof. Dai

Network

\L

Loss/Objective

-Xercise 4

-~

Solver

\

J

(U

)

-

Optimizer

Training Loop

Validation

\

J

_
-

J

Recap: Exercise 4

SVC with linear kernel LinearSVC (linear kernel)

Back to the roots!

sepal width (cm)
sepal width (cm)

Common machine
learning approaches:

sepal length (cm) sepal length (cm)
SVC with RBF kernel

Original points

i
J

- SVM
- Nearest Neighbors

sepal width (cm)

sepal length (cm)

Img src: scikit-learn.org, knowyourmeme “we don't do that here”

12D Prof. Dai

Universal
Approximation
Theorem

Universal Approximation Theorem

Theorem (1989, colloquial)

For any continuous function f on a compact set K, there
exists a one layer neural network, having only a single
hidden layer + sigmoid, which uniformly approximates f to
within an arbitrary e > 0 on K.

12D Prof. Dai

Weighted output from hidden layer

Universal Approximation Theorem

Readable proof:

https./mcneela.dithub.io/machine_learning/2017/03/21/

Universal-Approximation-Theorem.html
(Background: Functional Analysis, Math Major 3rd semester)

Visual proof:
nttp.//neuralnetworksanddeeplearning.com/chap4.ntml

12D Prof. Dai

https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
http://neuralnetworksanddeeplearning.com/chap4.html

A word of warning

Source:

http/blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

2D Prof. Dai

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

How deep Is your love

« Shallow
(1 hidden layer)

* Deep
(>1 hidden layer)

12D Prof. Dai

10

Obvious Questions

e Q: Do we even need deep networks?
A: Yes. Multiple layers allow for more abstraction power
given a fixed computational budget in comparison to a
single layer — better at generalization

e Q: So we just build 100 layer deep networks?
A: Not trivially ;-)
- Constraints: Memory, vanishing gradients, .
- deeper |- working better

12D Prof. Dai 11

Exercise 5

12D Prof. Dai

Recap: Exercise 4

EX4: EX5
¢ Small dataset « CIFAR10
And simple objective Actual competitive task
« Simple classifier « Modularized Network
Single welght matrix Chain rule rules
« Gradient descent solver » Stochastic Descent

Whole forward pass in memory

12D Prof. Dai 13

Recap: Exercise 4

X):

class Classifier(Network): s

forward pass of the model.
Classifier of the form y = sigmoid(X % W)

b ray of training data. Each row is a D-dimensional point.
redicted labels for the data in X, shape N x 1

def __init_ (self, num_features=2): —-dimensional array of length N with classification scores.

super(Classifier, self).__init_ ("classifier")

assert self.W is not None, "weight matrix W is not initialized"
self.num_features = num_features # add a column of 1s to the data for the bias term
salf.W = Noha batch_size, = X.shape

e X = np.concatenate((X, np.ones((batch_size, 1))), axis=1)

save the samples for the backward pass
self.cache = X

def initialize_weights(self, weights=None

Initialize the weight matrix W

:param weights: optional weights for i ion

#
P P . ement the forward pass and return the output of the model. Note #
if weights is not None:
5 # that you need to implement the function self.sigmoid() for that #
assert weights.shape == (self.num_features + 1, 1), \
"weights for initialization are not in the correct @hape
self.W = weights y = X.dot(self.W)
else: y = self.sigmoid(y)
self.W = 0.001 x np.random.randn(self.num_feat 1,%)
END OF YOUR CODE
12DL: Prof. Dai

14

New: Modularization

S lass Sigmoid:
Chaln Ru le: : as:eflﬂ(i);it_(self):

pass

af af ad def forward(self, x):

:param x: Inputs, of any shape

dy ad 9y

:return out: Output, of the same shape as x
:return cache: Cache, for backward computation, of the same shape as x

def backward(self, dout, cache):

:return: dx: the gradient w.r.t. input X, of the same shape as X

12DL: Prof. Dai 15

* One notebook -
— But along one.

Overview Exercise 5

\U

deadline

Nov 23, 2022 1559:59

J

« Multiple smaller mplementation objectives

12D Prof. Dai

Definition
5 1L
E(,y) = — — yir log (i
@) = ;;[yir log(§ k)]

where:

« N is again the number of samples

o C'is the number of classes

* ik is the probability that the model assigns for the k'th class when the i'th sample is the input.
oy = Liff the true label of the ith sample is k and 0 otherwise. This is called a one-hot encoding.

Task: Check Formula

Check for yourself that when the number of classes C'is 2, then binary cross-entropy is actually equivalent to cross-entropy.

Outlook Ex6: CIFAR10 again
@

i

Hyperparameters

n_layers =3
Q n_neurons = 512
learning_rate = 0.1

n_layers =3
Q n_neurons = 1024
learning_rate = 0.01

n_layers =5
ﬁ n_neurons = 256
learning rate = 0.1

il

I2DL: Prof Da

run optimize()

Parameters
&< Weights
> optimization
> We_ights '
> optimization
=5 Weights
- optimization

22

Score

80%

92%

1/

TUTi

See you next week

12D Prof. Dai

