TUTi

Scaling Optimization

[2DL: Prof, Dal

TUTi

|_ecture 4 Recap

[2DL: Prof, Dal

Neural Network

output layer
input layer
hidden layer

Source: http//cs231n.github.io/neural-networks-1/

12DL: Prof, Dal

http://cs231n.github.io/neural-networks-1/

{L

Width

[2DL: Prof, Dal

Input Layer

Neural Network

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

SRS S AL an 4" o;i /
&7
AN, R 2K 77 R T R bmyza-;.

| Q‘& ?‘;‘f{/’,;f"'i.'&\?@x\@t&:}g&fr1.=\mx‘$y"!%;€m”- \
EXNRSKFLLLT) N\ LE T e 57 \
% s L7 LN

& I :l: = 77— .

7
/

B) DA XEET A
RSN ENT 7525 AP KAALL 5% RN KL R <S—
KRR ANRDIBK T B LA RSB L E DRIRZE
SIS LA S NSRS SEATHLTT NSRS HRA ST RN v
% 7 < % 7 Y
= ORSEA JoSLoL IRRREIBREK, IREEEIERE, S|, RS
X ? SN WEFA ETGE N WK EF
Pt s e o=t L el e e—w0
ST K KNS TSN AT T NSRBI AT AL KA S REE S — XK BISH7
RIS BB E RSN B IR T A
eI B SRR B RO~ S £
O e A e e 4_'.‘;‘::0,; HAACREXS - .-:.—..".;;zo_,;#@gm AR XS .___"/'M.\
S RIS £7 52N

T AT R] g SR8
S RN ERIPET S , - N A NN
R LB ERNT O 2R ISESK ARG HE KSEIKY
X L SN A SN

= Q=22 A&‘R\m\‘e.—ﬁnz ZA AR

L7

S
7

(SN SN AN

7 «\\‘\3 ZI'I‘,’ ﬁ‘:\\\b\ ‘//‘,,',z'g %‘QXQ\\\X

W

\
)

\

A 4

Compute Graphs — Neural Networks

Input layer Output layer
—— ——

X0 |
;
X1

ed. class label/
regression target

[2DL: Prof, Dal

Weights RelLU Activation | 21 0sS

(not arguing this is the
(UNknowns!) rignt choice here)

INnput

—

We want to compute gradients w.rt. all weights W

| 0SS/
COSt

Compute Graphs — Neural Networks

Input layer

[2DL: Prof, Dal

</
S
)>@

N

Output layer
A

‘ @

Yo

V1

Y2

| 0SS/
Ccost

| 0ss/
COSt

| 0SS/
COSt

We want to compute gradients wrt all weights W
6

Compute Graphs — Neural Networks

Input layer Output layer Goal: We want to compute gradients of

[A ‘ [A , the loss function L w.rt all weights w

L= Z L;
X0
‘@ Yo L: sum over loss per sample, eg.
g L2 loss — simply sum up squares:

L: = (V: — v.)?
)@ V1 i = @i -y

Xy — use chain rule to compute partials
5;1' = A(bl + kai,k) aL . (3L ayl
AN Owi 09 0wy
Activation bias

We want to compute gradients wrt.
all weights W all biases b

12D Prof. Dai a

function

summary

Cof -

« We have OWo,0,0
— (Directional) compute graph -
— Structure graph into layers o e (W) = |5 of

— Compute partial derivatives w.rt Wim,n
welghts (unknowns) 5

| 0by |

e Next

— Find weights based on gradients Cradient step

W' =W — aVy fieyy (W)

12D Prof. Dai

Optimization

[2DL: Prof, Dal

Gradient Descent

x* = argmin f(x)

INnitialization

Optimum

12DL: Prof, Dal

INnitialization

Follow the slop
of the
DERIVATIVE

df(x) _ flr+h) = f(x)

dx h

12DL: Prof, Dal

\

Gradient Descent

x* = argmin f(x)

-0

Optimum
o o)

11

Gradient Descent

« From derivative to gradient Direction of
greatest increase
df (x of the function
];EC) Ve f (x)

« Gradient steps in direction of negative gradient

f(x) @ *
x'=x—aV.f(x)

L earning rate

12D Prof. Dai

Gradient Descent

« From derivative to gradient Direction of
greatest increase
df (x of the function
];EC) Ve f (x)

« Gradient steps in direction of negative gradient

f(x) @ *
x'=x—aV.f(x)

SMALL Learning rate

12D Prof. Dai

Gradient Descent

* From derivative to gradient Direction of
greatest increase
df (x of the function
];EC) Ve f (x)

« Cradient steps in direction of negative gradient

Vef(x) @ *
x'=x—aV,.f(x)

LARGE Leamning rate

12D Prof. Dai

Gradient Descent

x* = argmin f(x)

Initialization

-
What Is the

greclent when Not guaranteed
we reach this

. Ont to reach the
\pomt? J S global optimum

12DL: Prof, Dal -

Convergence of Gradient Descent

« Convex function: all local minima are global minima

f(z)

tf (1) + (1 =) f (w2)

I (t:!:l + (1 - t):ﬂz) B

try + (1 — i)CEQ

Source: https.//en.wikipedia.org/wiki/Convex_function#/media/File.ConvexFunction.svg

f ine/plane segment between any two points lies above or on the graph

12D Prof. Dai 16

https://en.wikipedia.org/wiki/Convex_function#/media/File:ConvexFunction.svg

Convergence of Gradient Descent

« Neural networks are non-convex
— many (different) local minima
— no (practical) way to say which is globally optimal

Global optimum -----

Local optima__----""
~Z
/
~ \
hE'S \
1

’
." Current optimum

[
P

Source: Li, QI (2006). Challenging Registration of Geologic Image Data

12D Prof. Dai

17

Convergence of Gradient Descent

Big learning rate Small learning rate

Source: https.//builtin.com/data-science/gradient-

descent

12D Prof. Dai

https://builtin.com/data-science/gradient-descent

Convergence of Gradient Descent

Cost
A

Plateau

> 0

. Global
Local minimum -
minimum

Source: A. Geron
12D Prof. Dai

Gradient Descent. Multiple Dimensions

((ﬂﬁ

A 4

Source: builtin.com/data-science/gradient-descent

Various ways to visualize.

12DL: Prof, Dal 20

http://builtin.com/data-science/gradient-descent

Gradient Descent. Multiple Dimensions

Source: http.//blog.datumbox.com/wp-content/uploads/2013/10/gradient-

descentpng
[2DL: Prof. Dai

21

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

Gradient Descent for Neural Networks

| 0ss function
Li =@ —y)?

@ Yo VW,bf{x,y} (W) =

output layer

yi=A(by,; + Z hjwy ;)
J

input layer

hidden layer

- of -

d Wo,0,0

of

0 Wl,m,n

A(x) = max(0, x)

| Just simple:
h] = A(bO,] + Z kaO,j,k) p
k

12D Prof. Dai

22

Gradient Descent: Single Training Sample

Given a loss function L and a single training sample
{xi, i}

Find best model parameters @ = {W, b}

Cost Ll-(B, xi,yi)

— @ =argminlL;(x;,y;)

Gradient Descent:

— Initialize @' with ‘random’ values (more on that later)

- 0" = 0" —aVyL (6%, x;,y))

~ lterate until convergence: |@%*1 — @%| < €

12DL: Prof. Dai

Gradient Descent: Single Training Sample

— 0k+1 = Hk — anLi(Bk,xi,yi
1 | |: Training sample

\Weights, biases after > Loss Function
update step » CGradient w.rt. @

> LLearning rate

v
Welights, biases at step k
(current model)

— VoL;(6%,x;,y;) computed via backpropagation
— Typically: dim (VgLi(Bk,xi,yi)) = dim(@) > 1 million

I2DL: Prof. Dai 24

Gradient Descent: Multiple Training Samples
« Given a loss function L and multiple (n) training

samples {x;, y;}
* Find best model parameters @ = {W, b}

e CoOstL = %Z?=1 Li(el Xi, yl)

-~ O =argminl

12D Prof. Dai

Gradient Descent: Multiple Training Samples

« Update step for multiple samples
0"t = 0% — aVyL(0%, X1 ny, Yi1.m3)
« Gradient is average / sum over residuals

1
VBL(BRI X{1.n} y{ln}) = n 271'1=1 lVBLi (ek’ Xi yl)'
Reminder: this comes from backprop.

« Often people are lazy and just write: VL = Y1t ; VgL;
— omitting % IS not 'wrong’, it just means rescaling the
learning rate

12DL: Prof. Dai

Side Note: Optimal Learning Rate

Can compute optimal learning rate a using Line Search
(optimal for a given set)

1. Compute gradient: VgL =% 1 VoL;

2. Optimize for optimal step a:
arg min L(O% — aVyl)

gk+1
3. gk+tl = gk — CZVQL Not that practical for DL since we
need to solve huge system every step..

12D Prof. Dai

Gradient Descent on Tralin Set

« (Glven large train set with n training samples {x;, y;}
—- Let'ssay 1 million labeled images
— Let's say our network has 500k parameters

o Gradient has 500k dimensions

* n=1million
— Extremely expensive to compute

12D Prof. Dai

Stochastic Gradient Descent (SGD)

« If we have n training samples we need to compute
the gradient for all of them which is 0(n)

« |f we consider the problem as empirical risk
minimization, we can express the total loss over the
training data as the expectation of all the samples

(z L;(0,x;, y,)) Ei(1,.m[L:i(0, x5, ¥:)]

12D Prof. Dai

Stochastic Gradient Descent (SGD)

« The expectation can be approximated with a small
subset of the data

1
Ei~[1,...,n] [Ll(el Xi, Yl)] ~ mzjes (L](e; xj; y])) with S © {1))n}

Minibatch
choose subset of trainset m K n

Bi = {{xl' yl}: {Xz, yZ}i ---:{xm' Ym}}
{BerZJ an/m}

12D Prof. Dai

Stochastic Gradient Descent (SGD)

« Minibatch size Is hyperparameter

12D Prof. Dai

Typically power of 2 = 8, 16, 32, 64, 128.

Smaller batch size means greater variance in the
gradients

— NOIsy updates
Mostly limited by GPU memory (in backward pass)
=g,
Train set has n = 229 (about 1 million) images
With batch size m = 64 By _ n/m = B1 .. 16,384 MiNibatches

(Epoch = complete pass through training set)

Stochastic Gradient Descent (SGD)

9k+1

%x{l"m}' y{lm})

" k now refers to k-th iteration
_ m
VoL = —2.;1=1 VoL

m

\ m training samples in the current minibatch
Gradient for the k-th minibatch

Note the terminology: lteration vs epoch

12D Prof. Dai

Convergence of SGD

Suppose we want to minimize the function F(8) with
the stochastic approximation

ok*1 = 6k — a; H(0%, X)

where aq, a, ... a, 1S a seqguence of positive step-sizes
and H(6%,X) is the unbiased estimate of VF(6%), ie.

E|H(6%, X)| = VF(6%)

Robbins, H. and Monro, S. A Stochastic Approximation Method™ 1951

12DL: Prof. Dai

Convergence of SGD

ok+1 = gk — q; H(6%, X)

converges to a local) minimum If the following
conditions are met

) a,=20Vvn=0

) 2%0=1 dp = O
) Yme1Qp <
)

N

TN OV

The proposed sequence by Robbins and Monro is a,, < %,for n>0

12D Prof. Dai

Problems of SGD

« (Gradient Is scaled equally across all dimensions
— |e., cannot independently scale directions

— need to have conservative min learning rate to avoid
divergence

— Slower than 'necessary

« Finding good learning rate is an art by itself
— More next lecture

12D Prof. Dai

Gradient Descent with Momentum

=——

Source: A, Ng
We're making many steps
back and forth along this Would love to go faster here.
dimension. Would love to .e., accumulated gradients over

track that this is averaging time
out over time.

l2DL: Prof. Dal A

Gradient Descent with Momentum

Bk —a pl(09)_
)</” \ e

veloCity |earning rate

9k+1 — Hk + Uk+1

N AN
velocity

welghts of model

accumulation rate Graohent of current minibatch

(‘friction’, momentum)

Exponentially-weighted average of gradient
Important: velocity v* is vector-valued!

[Sutskever et al, ICML'13] On the importance of initialization and momentum in deep learning
I2DL: Prof. Dai 37

1201

Gradient Descent with Momentum

Step will be largest when a sequence of
gradients all point to the same direction

Hyperparameters are a,
B is often setto 0.9

—30
-30 =20 —-10 O 10 20
Source: I. Goodfellow

9k+1 — ek + vk+1

Prof. Dai 38

Gradient Descent with Momentum

e Canitovercome local mmnima?

9k+1 — ek + vk+1

12DL: Prof, Dal

39

Nesterov Momentum

e | ook-ahead momentum
pk+1 = 0K + 3 - v*
vk+1 — IB) vk —a- VOL('ék+1)
9k+1 — Hk 4+ vk+1

Nesterov, Yurii E. "A method for solving the convex programming problem with convergence rate O (1/k” 2)." Dokl akad nauk Sssr. Vol 269.
1083.

12D Prof. Dai 40

Nesterov Momentum

* First make a big jump in the direction of the previous accumulated gradient.
* Then measure the gradient where you end up and make a correction.

| 3
. 2

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum
gk+1 =0k+’B,vk
Source: G, Hinton ~
vk+1 — ,B . ’Uk —a- VBL(9k+1)

k+1 = gk + pktl
l2DL: Prof. Dai

41

Root Mean Squared Prop (RMSProp)

———

Small gradients

Large gradients

Source: Andrew. Ng

« RMSProp divides the learning rate by an
exponentially-decaying average of squared gradients.

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude." COURSERA: Neural
networks for machine learning 4.2 (2012). 26-31.

12DL: Prof. Dai 42

RMSProp

Sk+1 = IB . Sk + (1 — ,BHVgL o VQL]}\

Flement-wise multiplication
VoL -

Vsktl 4 ¢

9k+1 — Bk—a

Hyperparameters. a, . €

/ I Typically 1078

Needs tuning! Often 0.9

12D Prof. Dai

RMSProp

———

Source: A Ng

Y-Direction
Large gradients

X-direction Small gradients
(Uncentered) variance of gradients . _____

— second momentum — skt =p. sk 4 (1 — B)[VoL © VL],

We're dividing by square gradients; g+l _ gl
I e PV RPN ' ' I = —a-
Division in Y-Direction will be [gh+T 4 ¢

I
large |
- Division in X-Direction will be I | |

I Can increase learning rate!

[e———————

12DL: Prof, Dal A4

RMSProp

« Dampening the oscillations for high-variance
directions

« Can use faster learning rate because it is less likely to
diverge
— Speed up learning speed
— Second moment

12DL: Prof. Dai

Adaptive Moment Estimation (Adam)

[dea : Combine Momentum and RMSProp

k+1 _ k kY . First momentum:
m =p1-m*+(1- :Bl)VGL(H) ‘ mean of gradients

v =B, - vF + (1 — By)[VL(6%) o VpL(6%)]

k+1
gk+tl — gk — o . 2 Note : This is not‘th
Voktlte update rule of Second momentum:
. Adam variance of gradients
Q. What happens at k = 07
A. \We need bias correction asm® = 0 and v° =
o

[Kingma et al, ICLR'15] Adam: A method for stochastic optimization
12DL: Prof. Dai 46

Adam : Bias Corrected

« Combines Momentum and RMSProp

mktl = B -m* + (1 — B)VeL(0%) vl =B, - v* + (1 — B,)[VeL(0%) o VyL(6%)

« m" and v* are initialized with zero
— blas towards zero
— Need bias-corrected moment updates

Update rule of Adam

r -- -I
1 k+1 k+1 I
[g1 skl _ Y k+1 k mk+1

1 mtT = vt = — gt =gk g —— |

12D Prof. Dai 47

Adam

« Exponentially-decaying mean and of
gradients (combines first and order
momentum)

* Hyperparameters a, 1. B, €

// j m =g emk 4+ (1 - p)VeL(0%)
L

= [, - VK + (1 — £,)[VeL(6%) o VgL(6¥)]

Needs tuning! 10ften 0.9 Typically 10-8l
k k
I Often 0.999 : mk+ =1 J:H pk+1 = Y +kl+1
L ---------------- 1_31 a1 1_32
~k+
1 0k+1 — Bk a- m
Defaults in PyTorch VOk+1 + €

12D Prof. Dai 48

There are a few others..

e Vanilla SGD
e Momentum

* RM>Prop Adam is mostly method
* Adagrad of choice for neural networks!
« Adadelta
« AdaMax
t's actually fun to play around with SGD
* Nada updates,
e AMSGrad t's easy and you get pretty immediate

feedback ©

12D Prof. Dai

12DL: Prof, Dal

Converger ce
Y=

] p— Momentum [
~— NAG -
— Adagrad |

Adadelta

Rmsprop

Source: http://ruder.io/optimizing-gradient-descent/

51

http://ruder.io/optimizing-gradient-descent/

12DL: Prof, Dal

Convergence

— SGD

= Momentum
w— NAG

- Adagrad
Adadelta
Rmsprop

1.0

=1.5

Source: http://ruder.io/optimizing-gradient-descent/

52

http://ruder.io/optimizing-gradient-descent/

Convergence
g TAdaetai00) |
e

https://github.com/Jaewan-Yun/optimizer-visualization

Jacobian and Hessian

« Derivative fiR->R 4f (x)
dx
- 4F () df ()
GradentpEen e (GR50)
* Jacobian f:R™ - R" | € R
* Hessian R S mxm SECOND
pREEZER S HER DERIVATIVE

12D Prof. Dai

Newton's Method

« Approximate our function by a second-order Taylor
series expansion

L(8) = L(60) + (8 — 80)T VoL (8,) +5 (8 — 6)H(6 — 6,)

\

First derivative Second derivative (curvature)

More info:
https.//enwikipedia.org/wiki/Taylor_series

12D Prof. Dai 55

)J

https://en.wikipedia.org/wiki/Taylor_series

Newton's Method

« Differentiate and equate to zero

0* - 00 - H_1V0L(0)

v

\We got rid of the learning rate!

Update step

SGD Ori1 =0, —aVpL(0y,%x; ,y;)

12D Prof. Dai

Newton's Method

« Differentiate and equate to zero

0*

Parameters of a
network (millions)

k

12D Prof. Dai

- 00 - H_1V9L(0)

Number of
clements in the
Hessian

k’2

Update step

Computational
complexity of inversion
per iteration

O(k?)

57

Newton's Method

» Gradient Descent (green)
« Newton's method exploits

the curvature to take a
more direct route

Source: https.//en.wikipedia.org/wiki/Newton%27s_method_in_optimization

12DL: Prof, Dal 58

https://en.wikipedia.org/wiki/Newton's_method_in_optimization

12D Prof. Dai

Newton's Method

J(6) = (y — X0)"(y — X60)

e

\.

Can you apply Newton's
method for linear regression?
What do you get as a result?

\

J

59

BFGS and L-BFGS

Broyden-Fletcher-Goldfarb-Shanno algorithm
Belongs to the family of guasi-Newton methods
Have an approximation of the inverse of the Hessian

0" =0, -Hr,L(0)

BFGS O(n?)
o Limited memory: L-BFGS O(n)

12D Prof. Dai

Gauss-Newton

© X1 = X — He(x) 7V f (xx)
— ‘true’ 279 derivatives are often hard to obtain (e.g.,
nuMerics)

- Hf ~ 2]1~T F
e Gauss-Newton (GN):
Xier1 = X — [2Jp () T O)71V (x)

« Solve linear system (again, inverting a matrix is
unstable):

2(]F(xk)T]F(xk))l(xk — 'xk+1) =Vf(xx)

Solve for delta vector

2DL: Prof. Dai

Levenberg

* |Levenberg
— ‘damped" version of Gauss-Newton:
Tikhonov

- (IF(xk)T]F(xk) + A1) - (o — Xp1) = VI(xg) regularization

— The damping factor 1 is adjusted in each iteration ensuring;

fQxx) > f(xXks1)

« if the equation is not fulfilled increase 1
« —Trustregion

* — ‘Interpolation” between Gauss-Newton (small 4) and
Gradient Descent (large 1)

2DL: Prof. Dai

Levenberg-Marguardt

« Levenberg-Marquardt (LM)

(]F(xk)T]F(xk) + 4 diag(]F(xk)T]F(xk))) (X — Xk41)
= Vf(xx)

- Instead of a plain Gradient Descent for large 4, scale
each component of the gradient according to the
curvature,

Avolids slow convergence in components with a small
gradient

12D Prof. Dai

Which, What, and When?

e Standard: Adam
« Fallback option: SGD with momentum

« Newton, L-BFGS, GN, LM only if you can do full
batch updates (doesn't work well for minibatches!)

I
This practically never happens for DL
Theoretically, it would be nice though due to fast
convergence

12D Prof. Dai

General Optimization

* Linear Systems (Ax = b)
— LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc,

* Non-linear (gradient-based)

— Newton, Gauss-Newton, LM, (LBFGS ~— second
order
— Gradient Descent, SGD < first order
* Others

— Genetic algorithms, MCMC, Metropolis-Hastings, etc.

— Constrained and convex solvers (Langrage, ADMM, Primal-
Dual, etc)

12D Prof. Dai

Please Remember!

Think about your problem and optimization at hand

SGD Is specifically designed for minibatch

When you can, use 2" order method — it's just faster

GD or SGD is not a way to solve a linear system!

12D Prof. Dai

Next Lecture

e Thisweek:

— Check exercises
— Check office hours ©

« Next lecture
— Training Neural networks

12D Prof. Dai

/2

TUTi

See you next week ©

[2DL: Prof, Dal

Some References to SGD Updates

Goodfellow et al. "Deep Learning’ (2016),

— Chapter 8: Optimization

Bishop "Pattern Recognition and Machine Learning’
(2000),

— Chapter 5.2 Network training (gradient descent)

— Chapter 5.4 The Hessian Matrix (second order methods)
nttps.//ruder.io/optimizing-gradient-descent/index html
Py Torch Documetation (with further readings)

— https.//pytorch.org/docs/stable/optim.html

12D Prof. Dai

https://ruder.io/optimizing-gradient-descent/index.html
https://pytorch.org/docs/stable/optim.html

