
Scaling Optimization

1I2DL: Prof. Dai

Lecture 4 Recap

2I2DL: Prof. Dai

Neural Network

Source: http://cs231n.github.io/neural-networks-1/

3I2DL: Prof. Dai

http://cs231n.github.io/neural-networks-1/

Neural Network

Depth

W
id

th

4

Input Layer
Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

I2DL: Prof. Dai

Compute Graphs → Neural Networks

5I2DL: Prof. Dai

Input layer Output layer

e.g., class label/
regression target

𝑥0

𝑥1 ∗ 𝑤1

∗ 𝑤0

+

Input
Weights

(unknowns!)

L2 Loss

Loss/
cost

We want to compute gradients w.r.t. all weights 𝑾

max(0, 𝑥)

ReLU Activation
(not arguing this is the
right choice here)

𝑥∗𝑥−𝑦0𝑥0

𝑥1

ො𝑦0 𝑦0

Compute Graphs → Neural Networks

6I2DL: Prof. Dai

𝑥0

𝑥1

ො𝑦0 𝑦0

Input layer Output layer

ො𝑦1

ො𝑦2

𝑦1

𝑦2

𝑥0

𝑥1

∗ 𝑤0,0

+
Loss/
cost

+
Loss/
cost

∗ 𝑤0,1

∗ 𝑤1,0

∗ 𝑤1,1

+ Loss/
cost

∗ 𝑤2,0

∗ 𝑤2,1

We want to compute gradients w.r.t. all weights 𝑾

𝑥∗𝑥

𝑥∗𝑥

𝑥∗𝑥

−𝑦0

−𝑦0

−𝑦0

Compute Graphs → Neural Networks

7I2DL: Prof. Dai

𝑥0

𝑥𝑘

ො𝑦0 𝑦0

Input layer Output layer

ො𝑦1 𝑦1

…

ො𝑦𝑖 = 𝐴(𝑏𝑖 +

𝑘

𝑥𝑘𝑤𝑖,𝑘)

𝐿 =

𝑖

𝐿𝑖

𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖
2

We want to compute gradients w.r.t.
all weights 𝑾 AND all biases 𝑏

Activation
function

bias

𝜕𝐿

𝜕𝑤𝑖,𝑘
=

𝜕𝐿

𝜕 ො𝑦𝑖
⋅
𝜕 ො𝑦𝑖
𝜕𝑤𝑖,𝑘

⟶ use chain rule to compute partials

Goal: We want to compute gradients of
the loss function 𝐿 w.r.t. all weights 𝑤

𝐿: sum over loss per sample, e.g.
L2 loss ⟶ simply sum up squares:

Summary
• We have

– (Directional) compute graph
– Structure graph into layers
– Compute partial derivatives w.r.t.

weights (unknowns)

• Next
– Find weights based on gradients

8I2DL: Prof. Dai

Gradient step:
𝑾′ = 𝑾− 𝛼𝛻𝑾𝑓𝒙,𝒚 (𝑾)

𝛻𝑾𝑓 𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Optimization

9I2DL: Prof. Dai

Gradient Descent

10

Optimum

Initialization

I2DL: Prof. Dai

𝑥∗ = argmin 𝑓(𝑥)

Gradient Descent

Follow the slope
of the
DERIVATIVE

11

Initialization

Optimum

I2DL: Prof. Dai

𝑥∗ = argmin 𝑓(𝑥)

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of
greatest increase

of the function

Learning rate

12I2DL: Prof. Dai

ⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥
𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

13I2DL: Prof. Dai

Direction of
greatest increase

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥

SMALL Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

14I2DL: Prof. Dai

Direction of
greatest increase

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥

LARGE Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥

Gradient Descent

Optimum

Not guaranteed
to reach the

global optimum

Initialization

What is the
gradient when
we reach this
point?

15I2DL: Prof. Dai

𝒙∗ = argmin 𝑓(𝒙)

Convergence of Gradient Descent
• Convex function: all local minima are global minima

If line/plane segment between any two points lies above or on the graph

Source: https://en.wikipedia.org/wiki/Convex_function#/media/File:ConvexFunction.svg

16I2DL: Prof. Dai

https://en.wikipedia.org/wiki/Convex_function#/media/File:ConvexFunction.svg

Convergence of Gradient Descent
• Neural networks are non-convex

– many (different) local minima
– no (practical) way to say which is globally optimal

Source: Li, Qi. (2006). Challenging Registration of Geologic Image Data

17I2DL: Prof. Dai

Convergence of Gradient Descent

Source: https://builtin.com/data-science/gradient-

descent

18I2DL: Prof. Dai

https://builtin.com/data-science/gradient-descent

Convergence of Gradient Descent

Source: A. Geron
19I2DL: Prof. Dai

Gradient Descent: Multiple Dimensions

Various ways to visualize…

Source: builtin.com/data-science/gradient-descent

20I2DL: Prof. Dai

http://builtin.com/data-science/gradient-descent

Gradient Descent: Multiple Dimensions

Source: http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-
descent.png

21I2DL: Prof. Dai

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

Gradient Descent for Neural Networks

22I2DL: Prof. Dai

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

ො𝑦0

ො𝑦1

𝑦0

𝑦1

ො𝑦𝑖 = 𝐴(𝑏1,𝑖 +

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)

ℎ𝑗 = 𝐴(𝑏0,𝑗 +

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

Loss function
𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖

2

Just simple:
𝐴 𝑥 = max(0, 𝑥)

𝛻𝑾,𝒃𝑓 𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Gradient Descent: Single Training Sample

23I2DL: Prof. Dai

• Given a loss function 𝐿 and a single training sample
{𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾,𝒃

• Cost 𝐿𝑖 𝜽, 𝒙𝑖 , 𝒚𝑖
– 𝜽 = argmin 𝐿𝑖(𝒙𝑖 , 𝒚𝑖)

• Gradient Descent:
– Initialize 𝜽1 with ‘random’ values (more on that later)
– 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽

𝑘 , 𝒙𝑖 , 𝒚𝑖)

– Iterate until convergence: 𝜽𝑘+1 − 𝜽𝑘 < 𝜖

Gradient Descent: Single Training Sample

24I2DL: Prof. Dai

– 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖)

– 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝒊 computed via backpropagation

– Typically: ⅆim 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖 = ⅆim 𝜽 ≫ 1𝑚𝑖𝑙𝑙𝑖𝑜𝑛

Weights, biases at step k
(current model)

Weights, biases after
update step

Learning rate
Gradient w.r.t. 𝜽

Training sample
Loss Function

Gradient Descent: Multiple Training Samples

25I2DL: Prof. Dai

• Given a loss function 𝐿 and multiple (𝑛) training
samples {𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾,𝒃

• Cost 𝐿 = 1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝜽, 𝒙𝑖 , 𝒚𝑖)

– 𝜽 = argmin 𝐿

Gradient Descent: Multiple Training Samples

26I2DL: Prof. Dai

• Update step for multiple samples

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛

• Gradient is average / sum over residuals

𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖 𝜽

𝑘 , 𝒙𝑖 , 𝒚𝒊

Reminder: this comes from backprop.

• Often people are lazy and just write: 𝛻𝐿 = σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

− omitting 1
𝑛

is not ‘wrong’, it just means rescaling the

learning rate

Side Note: Optimal Learning Rate

Not that practical for DL since we
need to solve huge system every step…

27I2DL: Prof. Dai

Can compute optimal learning rate 𝛼 using Line Search
(optimal for a given set)

1. Compute gradient: 𝛻𝜽𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

2. Optimize for optimal step 𝛼:
argmin

𝛼
𝐿(𝜽𝑘 − 𝛼 𝛻𝜽𝐿)

3. 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿

Gradient Descent on Train Set

28I2DL: Prof. Dai

• Given large train set with 𝑛 training samples {𝒙𝑖 , 𝒚𝑖}
– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

→ Extremely expensive to compute

Stochastic Gradient Descent (SGD)

29I2DL: Prof. Dai

• If we have 𝑛 training samples we need to compute
the gradient for all of them which is 𝑂(𝑛)

• If we consider the problem as empirical risk
minimization, we can express the total loss over the
training data as the expectation of all the samples

1

𝑛

𝑖=1

𝑛

𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 = 𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊

Stochastic Gradient Descent (SGD)
• The expectation can be approximated with a small

subset of the data

30I2DL: Prof. Dai

𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 ≈
1

𝑆

𝑗∈𝑆
𝐿𝑗 𝜽, 𝒙𝒋, 𝒚𝒋 with S ⊆ 1,… , 𝑛

Minibatch
choose subset of trainset 𝑚 ≪ 𝑛

𝐵𝑖 = { 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 , … , 𝒙𝒎, 𝒚𝒎 }
{𝐵1, 𝐵2, … , 𝐵𝑛/𝑚}

Stochastic Gradient Descent (SGD)

31

(Epoch = complete pass through training set)
I2DL: Prof. Dai

• Minibatch size is hyperparameter
– Typically power of 2 → 8, 16, 32, 64, 128…
– Smaller batch size means greater variance in the

gradients
→ noisy updates

– Mostly limited by GPU memory (in backward pass)
– E.g.,

• Train set has n = 220 (about 1 million) images
• With batch size m = 64: 𝐵1 … 𝑛/𝑚 = 𝐵1 … 16,384 minibatches

Stochastic Gradient Descent (SGD)

32I2DL: Prof. Dai

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽
𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

Note the terminology: iteration vs epoch

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch

Convergence of SGD

33

Robbins, H. and Monro, S. “A Stochastic Approximation Method" 1951.

I2DL: Prof. Dai

Suppose we want to minimize the function 𝐹 𝜃 with
the stochastic approximation

where 𝛼1, 𝛼2…𝛼𝑛 is a sequence of positive step-sizes
and 𝐻 𝜃𝑘 , 𝑋 is the unbiased estimate of 𝛻F 𝜃𝑘 , i.e.

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

𝔼 𝐻 𝜃𝑘 , 𝑋 = 𝛻F 𝜃𝑘

Convergence of SGD

34I2DL: Prof. Dai

converges to a local (global) minimum if the following
conditions are met:

1) 𝛼𝑛 ≥ 0, ∀ 𝑛 ≥ 0
2) σ𝑛=1

∞ 𝛼𝑛 = ∞
3) σ𝑛=1

∞ 𝛼𝑛
2 < ∞

4) 𝐹 𝜃 is strictly convex

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

The proposed sequence by Robbins and Monro is 𝛼𝑛 ∝
𝛼

𝑛
, 𝑓𝑜𝑟 𝑛 > 0

Problems of SGD
• Gradient is scaled equally across all dimensions
→ i.e., cannot independently scale directions
→ need to have conservative min learning rate to avoid
divergence
→ Slower than ‘necessary’

• Finding good learning rate is an art by itself
→More next lecture

35I2DL: Prof. Dai

Gradient Descent with Momentum

We’re making many steps
back and forth along this
dimension. Would love to
track that this is averaging
out over time.

Would love to go faster here…
I.e., accumulated gradients over
time

Source: A. Ng

36I2DL: Prof. Dai

Gradient Descent with Momentum

37
[Sutskever et al., ICML’13] On the importance of initialization and momentum in deep learning

I2DL: Prof. Dai

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(𝜽
𝑘)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!

Gradient of current minibatch
velocityaccumulation rate

(‘friction’, momentum) learning rate

velocity
weights of model

Gradient Descent with Momentum

Step will be largest when a sequence of
gradients all point to the same direction

Source: I. Goodfellow

38I2DL: Prof. Dai

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Gradient Descent with Momentum

39I2DL: Prof. Dai

• Can it overcome local minima?

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Nesterov Momentum

Nesterov, Yurii E. "A method for solving the convex programming problem with convergence rate O (1/k^ 2)." Dokl. akad. nauk Sssr. Vol. 269.
1983.

40I2DL: Prof. Dai

• Look-ahead momentum

෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Nesterov Momentum

Source: G. Hinton

41I2DL: Prof. Dai

෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Root Mean Squared Prop (RMSProp)

• RMSProp divides the learning rate by an
exponentially-decaying average of squared gradients.

Small gradients

La
rg

e
g

ra
d

ie
nt

s

Source: Andrew. Ng

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude." COURSERA: Neural
networks for machine learning 4.2 (2012): 26-31.

42I2DL: Prof. Dai

RMSProp

43I2DL: Prof. Dai

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Typically 10−8

Often 0.9

Element-wise multiplication

Needs tuning!

RMSProp

44I2DL: Prof. Dai

X-direction Small gradients

Y
-D

ire
ct

io
n

La
rg

e
g

ra
d

ie
nt

s

Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be
large
- Division in X-Direction will be
small

(Uncentered) variance of gradients
→ second momentum

Can increase learning rate!

RMSProp
• Dampening the oscillations for high-variance

directions

• Can use faster learning rate because it is less likely to
diverge
→ Speed up learning speed
→ Second moment

45I2DL: Prof. Dai

Adaptive Moment Estimation (Adam)

[Kingma et al., ICLR’15] Adam: A method for stochastic optimization

46I2DL: Prof. Dai

Idea : Combine Momentum and RMSProp
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝒎𝑘+1

𝒗𝑘+1+𝜖

First momentum:
mean of gradients

Second momentum:
variance of gradients

Q. What happens at 𝑘 = 0?
A. We need bias correction as 𝒎0 = 0 and 𝒗0 = 0

Note : This is not the
update rule of
Adam

Adam : Bias Corrected

47I2DL: Prof. Dai

• Combines Momentum and RMSProp

𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

• 𝒎𝑘 and 𝒗𝑘 are initialized with zero
→ bias towards zero
→ Need bias-corrected moment updates

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1 − 𝛽1
𝑘+1

ෝ𝒗𝑘+1 =
𝒗𝑘+1

1 − 𝛽2
𝑘+1 𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅

ෝ𝒎𝑘+1

ෝ𝒗𝑘+1+𝜖

Update rule of Adam

Adam

48I2DL: Prof. Dai

• Exponentially-decaying mean and variance of
gradients (combines first and second order
momentum)

• Hyperparameters: 𝛼, 𝛽1, 𝛽2, 𝜖
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + 1 − 𝛽2 𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1−𝛽1
𝑘+1 ෝ𝒗𝑘+1 =

𝒗𝑘+1

1−𝛽2
𝑘+1

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
ෝ𝒎𝑘+1

ෝ𝒗𝑘+1 + 𝜖

Typically 10−8Often 0.9
Often 0.999

Defaults in PyTorch

Needs tuning!

There are a few others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad

Adam is mostly method
of choice for neural networks!

It’s actually fun to play around with SGD
updates.
It’s easy and you get pretty immediate
feedback ☺

50I2DL: Prof. Dai

Convergence

Source: http://ruder.io/optimizing-gradient-descent/
51I2DL: Prof. Dai

http://ruder.io/optimizing-gradient-descent/

Convergence

Source: http://ruder.io/optimizing-gradient-descent/
52I2DL: Prof. Dai

http://ruder.io/optimizing-gradient-descent/

Convergence

Source: https://github.com/Jaewan-Yun/optimizer-visualization
53I2DL: Prof. Dai

https://github.com/Jaewan-Yun/optimizer-visualization

Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian

54I2DL: Prof. Dai

SECOND
DERIVATIVE

𝒇:ℝ → ℝ
ⅆ𝑓 𝑥

ⅆ𝑥

𝒇:ℝ𝑚 → ℝ 𝛻𝒙𝑓 𝒙

𝒇:ℝ𝑚 → ℝ𝑛 𝐉 ∈ ℝ𝑛 ×𝑚

𝒇:ℝ𝑚 → ℝ 𝐇 ∈ ℝ𝑚×𝑚

ⅆ𝑓 𝒙

ⅆ𝑥1
,
ⅆ𝑓 𝒙

ⅆ𝑥2

Newton’s Method
• Approximate our function by a second-order Taylor

series expansion

55

More info:
https://en.wikipedia.org/wiki/Taylor_series

I2DL: Prof. Dai

First derivative Second derivative (curvature)

𝐿 𝜽 ≈ 𝐿 𝜽0 + 𝜽 − 𝜽0
𝑇𝜵𝜽𝐿 𝜽0 +

1

2
𝜽 − 𝜽0

𝑇𝐇 𝜽 − 𝜽0

https://en.wikipedia.org/wiki/Taylor_series

Newton’s Method
• Differentiate and equate to zero

56I2DL: Prof. Dai

SGD

We got rid of the learning rate!

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝐱𝒊 , 𝐲𝒊

Update step𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽

Newton’s Method
• Differentiate and equate to zero

57I2DL: Prof. Dai

Update step

Parameters of a
network (millions)

Number of
elements in the

Hessian

Computational
complexity of ‘inversion’

per iteration

𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽

Newton’s Method
• Gradient Descent (green)

• Newton’s method exploits
the curvature to take a
more direct route

58

Source: https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

I2DL: Prof. Dai

https://en.wikipedia.org/wiki/Newton's_method_in_optimization

Newton’s Method

59

Can you apply Newton’s
method for linear regression?
What do you get as a result?

I2DL: Prof. Dai

𝐽 𝜽 = 𝐲 − 𝐗𝛉 𝑇 𝐲 − 𝐗𝛉

BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS

60I2DL: Prof. Dai

𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽

Gauss-Newton

61I2DL: Prof. Dai

• 𝑥𝑘+1 = 𝑥𝑘 −𝐻𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘)

– ‘true’ 2nd derivatives are often hard to obtain (e.g.,
numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• Gauss-Newton (GN):
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is
unstable):

2 𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Solve for delta vector

Levenberg
• Levenberg

– “damped” version of Gauss-Newton:
– 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝐼 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– The damping factor 𝜆 is adjusted in each iteration ensuring:
𝑓 𝑥𝑘 > 𝑓(𝑥𝑘+1)

• if the equation is not fulfilled increase 𝜆
• →Trust region

• → “Interpolation” between Gauss-Newton (small 𝜆) and
Gradient Descent (large 𝜆)

62I2DL: Prof. Dai

Tikhonov
regularization

Levenberg-Marquardt

63I2DL: Prof. Dai

• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ ⅆ𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale
each component of the gradient according to the
curvature.
• Avoids slow convergence in components with a small

gradient

Which, What, and When?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full
batch updates (doesn’t work well for minibatches!!)

This practically never happens for DL
Theoretically, it would be nice though due to fast

convergence

64I2DL: Prof. Dai

General Optimization

• Linear Systems (Ax = b)
– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear (gradient-based)
– Newton, Gauss-Newton, LM, (L)BFGS ← second

order
– Gradient Descent, SGD ← first order

• Others
– Genetic algorithms, MCMC, Metropolis-Hastings, etc.
– Constrained and convex solvers (Langrage, ADMM, Primal-

Dual, etc.)

65I2DL: Prof. Dai

Please Remember!
• Think about your problem and optimization at hand

• SGD is specifically designed for minibatch

• When you can, use 2nd order method → it’s just faster

• GD or SGD is not a way to solve a linear system!

66I2DL: Prof. Dai

Next Lecture
• This week:

– Check exercises
– Check office hours ☺

• Next lecture
– Training Neural networks

72I2DL: Prof. Dai

See you next week ☺

73I2DL: Prof. Dai

Some References to SGD Updates
• Goodfellow et al. “Deep Learning” (2016),

– Chapter 8: Optimization
• Bishop “Pattern Recognition and Machine Learning”

(2006),
– Chapter 5.2: Network training (gradient descent)
– Chapter 5.4: The Hessian Matrix (second order methods)

• https://ruder.io/optimizing-gradient-descent/index.html
• PyTorch Documetation (with further readings)

– https://pytorch.org/docs/stable/optim.html

74I2DL: Prof. Dai

https://ruder.io/optimizing-gradient-descent/index.html
https://pytorch.org/docs/stable/optim.html

