
Scaling Optimization
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Lecture 4 Recap
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Neural Network

Source: http://cs231n.github.io/neural-networks-1/
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http://cs231n.github.io/neural-networks-1/


Neural Network
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Input Layer
Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer
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Compute Graphs → Neural Networks
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Input layer Output layer

e.g., class label/
regression target

𝑥0

𝑥1 ∗ 𝑤1

∗ 𝑤0

+

Input
Weights

(unknowns!)

L2 Loss

Loss/
cost

We want to compute gradients w.r.t. all weights 𝑾

max(0, 𝑥)

ReLU Activation
(not arguing this is the 
right choice here)

𝑥∗𝑥−𝑦0𝑥0

𝑥1

ො𝑦0 𝑦0



Compute Graphs → Neural Networks
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𝑥0

𝑥1

ො𝑦0 𝑦0

Input layer Output layer

ො𝑦1

ො𝑦2

𝑦1

𝑦2

𝑥0

𝑥1

∗ 𝑤0,0

+
Loss/
cost

+
Loss/
cost

∗ 𝑤0,1

∗ 𝑤1,0

∗ 𝑤1,1

+ Loss/
cost

∗ 𝑤2,0

∗ 𝑤2,1

We want to compute gradients w.r.t. all weights 𝑾

𝑥∗𝑥

𝑥∗𝑥

𝑥∗𝑥

−𝑦0

−𝑦0

−𝑦0



Compute Graphs → Neural Networks
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𝑥0

𝑥𝑘

ො𝑦0 𝑦0

Input layer Output layer

ො𝑦1 𝑦1

…

ො𝑦𝑖 = 𝐴(𝑏𝑖 +

𝑘

𝑥𝑘𝑤𝑖,𝑘)

𝐿 =

𝑖

𝐿𝑖

𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖
2

We want to compute gradients w.r.t. 
all weights 𝑾 AND all biases 𝑏

Activation 
function

bias

𝜕𝐿

𝜕𝑤𝑖,𝑘
=

𝜕𝐿

𝜕 ො𝑦𝑖
⋅
𝜕 ො𝑦𝑖
𝜕𝑤𝑖,𝑘

⟶ use chain rule to compute partials

Goal: We want to compute gradients of 
the loss function 𝐿 w.r.t. all weights 𝑤

𝐿: sum over loss per sample, e.g. 
L2 loss ⟶ simply sum up squares:



Summary
• We have

– (Directional) compute graph
– Structure graph into layers
– Compute partial derivatives w.r.t. 

weights (unknowns)

• Next
– Find weights based on gradients
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Gradient step:
𝑾′ = 𝑾− 𝛼𝛻𝑾𝑓𝒙,𝒚 (𝑾)

𝛻𝑾𝑓 𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚



Optimization
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Gradient Descent

10

Optimum

Initialization
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𝑥∗ = argmin 𝑓(𝑥)



Gradient Descent

Follow the slope 
of the 
DERIVATIVE

11

Initialization

Optimum
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𝑥∗ = argmin 𝑓(𝑥)



Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest increase 

of the function

Learning rate
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ⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥
𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥



Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient
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Direction of 
greatest increase 

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥

SMALL Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥



Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient
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Direction of 
greatest increase 

of the functionⅆ𝑓 𝑥

ⅆ𝑥
𝛻𝑥𝑓 𝑥

𝛻𝑥𝑓(𝑥) 𝑥

LARGE Learning rate

𝑥′ = 𝑥 − 𝛼𝛻𝑥𝑓 𝑥



Gradient Descent

Optimum

Not guaranteed 
to reach the 

global optimum

Initialization

What is the 
gradient when 
we reach this 
point?
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𝒙∗ = argmin 𝑓(𝒙)



Convergence of Gradient Descent
• Convex function: all local minima are global minima

If line/plane segment between any two points lies above or on the graph

Source: https://en.wikipedia.org/wiki/Convex_function#/media/File:ConvexFunction.svg
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https://en.wikipedia.org/wiki/Convex_function#/media/File:ConvexFunction.svg


Convergence of Gradient Descent
• Neural networks are non-convex

– many (different) local minima
– no (practical) way to say which is globally optimal

Source: Li, Qi. (2006). Challenging Registration of Geologic Image Data 
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Convergence of Gradient Descent

Source: https://builtin.com/data-science/gradient-

descent
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https://builtin.com/data-science/gradient-descent


Convergence of Gradient Descent

Source: A. Geron
19I2DL: Prof. Dai



Gradient Descent: Multiple Dimensions

Various ways to visualize…

Source: builtin.com/data-science/gradient-descent
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http://builtin.com/data-science/gradient-descent


Gradient Descent: Multiple Dimensions

Source: http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-
descent.png
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http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png


Gradient Descent for Neural Networks
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𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

ො𝑦0

ො𝑦1

𝑦0

𝑦1

ො𝑦𝑖 = 𝐴(𝑏1,𝑖 +

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)

ℎ𝑗 = 𝐴(𝑏0,𝑗 +

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

Loss function
𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖

2

Just simple: 
𝐴 𝑥 = max(0, 𝑥)

𝛻𝑾,𝒃𝑓 𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚



Gradient Descent: Single Training Sample
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• Given a loss function 𝐿 and a single training sample 
{𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾,𝒃

• Cost 𝐿𝑖 𝜽, 𝒙𝑖 , 𝒚𝑖
– 𝜽 = argmin 𝐿𝑖(𝒙𝑖 , 𝒚𝑖)

• Gradient Descent:
– Initialize 𝜽1 with ‘random’ values (more on that later)
– 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽

𝑘 , 𝒙𝑖 , 𝒚𝑖)

– Iterate until convergence: 𝜽𝑘+1 − 𝜽𝑘 < 𝜖



Gradient Descent: Single Training Sample
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– 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿𝑖(𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖)

– 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝒊 computed via backpropagation 

– Typically: ⅆim 𝛻𝜽𝐿𝑖 𝜽
𝑘 , 𝒙𝑖 , 𝒚𝑖 = ⅆim 𝜽 ≫ 1𝑚𝑖𝑙𝑙𝑖𝑜𝑛

Weights, biases at step k
(current model)

Weights, biases after
update step

Learning rate
Gradient w.r.t. 𝜽

Training sample
Loss Function



Gradient Descent: Multiple Training Samples
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• Given a loss function 𝐿 and multiple (𝑛) training 
samples {𝒙𝑖 , 𝒚𝑖}

• Find best model parameters 𝜽 = 𝑾,𝒃

• Cost 𝐿 = 1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝜽, 𝒙𝑖 , 𝒚𝑖)

– 𝜽 = argmin 𝐿



Gradient Descent: Multiple Training Samples
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• Update step for multiple samples

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛

• Gradient is average / sum over residuals

𝛻𝜽𝐿 𝜽𝑘 , 𝒙 1..𝑛 , 𝒚 1..𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖 𝜽

𝑘 , 𝒙𝑖 , 𝒚𝒊

Reminder: this comes from backprop.

• Often people are lazy and just write: 𝛻𝐿 = σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

− omitting 1
𝑛

is not ‘wrong’, it just means rescaling the 

learning rate



Side Note: Optimal Learning Rate

Not that practical for DL since we
need to solve huge system every step…
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Can compute optimal learning rate 𝛼 using Line Search
(optimal for a given set)

1. Compute gradient:  𝛻𝜽𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜽𝐿𝑖

2. Optimize for optimal step 𝛼:
argmin

𝛼
𝐿(𝜽𝑘 − 𝛼 𝛻𝜽𝐿)

3. 𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿



Gradient Descent on Train Set
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• Given large train set with 𝑛 training samples {𝒙𝑖 , 𝒚𝑖}
– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters 

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

→ Extremely expensive to compute



Stochastic Gradient Descent (SGD)
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• If we have 𝑛 training samples we need to compute 
the gradient for all of them which is 𝑂(𝑛)

• If we consider the problem as empirical risk 
minimization, we can express the total loss over the 
training data as the expectation of all the samples

1

𝑛


𝑖=1

𝑛

𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 = 𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊



Stochastic Gradient Descent (SGD)
• The expectation can be approximated with a small 

subset of the data
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𝔼𝑖~ 1,…,𝑛 𝐿𝑖 𝜽, 𝒙𝒊, 𝒚𝒊 ≈
1

𝑆


𝑗∈𝑆
𝐿𝑗 𝜽, 𝒙𝒋, 𝒚𝒋 with S ⊆ 1,… , 𝑛

Minibatch 
choose subset of trainset 𝑚 ≪ 𝑛

𝐵𝑖 = { 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 , … , 𝒙𝒎, 𝒚𝒎 }
{𝐵1, 𝐵2, … , 𝐵𝑛/𝑚}



Stochastic Gradient Descent (SGD)

31

(Epoch = complete pass through training set)
I2DL: Prof. Dai

• Minibatch size is hyperparameter
– Typically power of 2 → 8, 16, 32, 64, 128…
– Smaller batch size means greater variance in the 

gradients
→ noisy updates

– Mostly limited by GPU memory (in backward pass)
– E.g., 

• Train set has n = 220 (about 1 million) images
• With batch size m = 64: 𝐵1 … 𝑛/𝑚 = 𝐵1 … 16,384 minibatches



Stochastic Gradient Descent (SGD)
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𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽
𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

Note the terminology: iteration vs epoch

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch



Convergence of SGD

33

Robbins, H. and Monro, S. “A Stochastic Approximation Method" 1951.

I2DL: Prof. Dai

Suppose we want to minimize the function 𝐹 𝜃 with 
the stochastic approximation

where 𝛼1, 𝛼2…𝛼𝑛 is a sequence of positive step-sizes 
and 𝐻 𝜃𝑘 , 𝑋 is the unbiased estimate of 𝛻F 𝜃𝑘 , i.e.

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

𝔼 𝐻 𝜃𝑘 , 𝑋 = 𝛻F 𝜃𝑘



Convergence of SGD
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converges to a local (global) minimum if the following 
conditions are met:

1) 𝛼𝑛 ≥ 0, ∀ 𝑛 ≥ 0
2) σ𝑛=1

∞ 𝛼𝑛 = ∞
3) σ𝑛=1

∞ 𝛼𝑛
2 < ∞

4) 𝐹 𝜃 is strictly convex

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻 𝜃𝑘 , 𝑋

The proposed sequence by Robbins and Monro is  𝛼𝑛 ∝
𝛼

𝑛
, 𝑓𝑜𝑟 𝑛 > 0



Problems of SGD
• Gradient is scaled equally across all dimensions
→ i.e., cannot independently scale directions
→ need to have conservative min learning rate to avoid 
divergence 
→ Slower than ‘necessary’

• Finding good learning rate is an art by itself
→More next lecture
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Gradient Descent with Momentum

We’re making many steps 
back and forth along this 
dimension. Would love to 
track that this is averaging 
out over time.

Would love to go faster here…
I.e., accumulated gradients over 
time

Source: A. Ng

36I2DL: Prof. Dai



Gradient Descent with Momentum

37
[Sutskever et al., ICML’13] On the importance of initialization and momentum in deep learning 

I2DL: Prof. Dai

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(𝜽
𝑘)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!

Gradient of current minibatch
velocityaccumulation rate

(‘friction’, momentum) learning rate

velocity
weights of model



Gradient Descent with Momentum

Step will be largest when a sequence of 
gradients all point to the same direction

Source: I. Goodfellow

38I2DL: Prof. Dai

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1



Gradient Descent with Momentum
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• Can it overcome local minima?

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1



Nesterov Momentum

Nesterov, Yurii E. "A method for solving the convex programming problem with convergence rate O (1/k^ 2)." Dokl. akad. nauk Sssr. Vol. 269. 
1983.
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• Look-ahead momentum

෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1



Nesterov Momentum

Source: G. Hinton
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෩𝜽𝑘+1 = 𝜽𝑘 + 𝛽 ⋅ 𝒗𝑘

𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 − 𝛼 ⋅ 𝛻𝜽𝐿(෩𝜽
𝑘+1)

𝜽𝑘+1 = 𝜽𝑘 + 𝒗𝑘+1



Root Mean Squared Prop (RMSProp)

• RMSProp divides the learning rate by an 
exponentially-decaying average of squared gradients.

Small gradients

La
rg

e 
g

ra
d
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s

Source: Andrew. Ng

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude." COURSERA: Neural 
networks for machine learning 4.2 (2012): 26-31.
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RMSProp
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𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Typically 10−8

Often 0.9

Element-wise multiplication

Needs tuning!



RMSProp
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X-direction Small gradients

Y
-D
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Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be 
large
- Division in X-Direction will be 
small

(Uncentered) variance of gradients 
→ second momentum

Can increase learning rate!



RMSProp
• Dampening the oscillations for high-variance 

directions

• Can use faster learning rate because it is less likely to 
diverge
→ Speed up learning speed
→ Second moment

45I2DL: Prof. Dai



Adaptive Moment Estimation (Adam)

[Kingma et al., ICLR’15] Adam: A method for stochastic optimization

46I2DL: Prof. Dai

Idea : Combine Momentum and RMSProp
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘 ]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝒎𝑘+1

𝒗𝑘+1+𝜖

First momentum: 
mean of gradients

Second momentum: 
variance of gradients

Q. What happens at 𝑘 = 0?
A. We need bias correction as 𝒎0 = 0 and 𝒗0 = 0

Note : This is not the 
update rule of 
Adam



Adam : Bias Corrected
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• Combines Momentum and RMSProp

𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

• 𝒎𝑘 and 𝒗𝑘 are initialized with zero 
→ bias towards zero
→ Need bias-corrected moment updates

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1 − 𝛽1
𝑘+1

ෝ𝒗𝑘+1 =
𝒗𝑘+1

1 − 𝛽2
𝑘+1 𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅

ෝ𝒎𝑘+1

ෝ𝒗𝑘+1+𝜖

Update rule of Adam



Adam
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• Exponentially-decaying mean and variance of 
gradients (combines first and second order 
momentum)

• Hyperparameters: 𝛼, 𝛽1, 𝛽2, 𝜖
𝒎𝑘+1 = 𝛽1 ⋅ 𝒎

𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘

𝒗𝑘+1 = 𝛽2 ⋅ 𝒗
𝑘 + 1 − 𝛽2 𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1−𝛽1
𝑘+1 ෝ𝒗𝑘+1 =

𝒗𝑘+1

1−𝛽2
𝑘+1

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
ෝ𝒎𝑘+1

ෝ𝒗𝑘+1 + 𝜖

Typically 10−8Often 0.9
Often 0.999

Defaults in PyTorch

Needs tuning!



There are a few others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad

Adam is mostly method 
of choice for neural networks!

It’s actually fun to play around with SGD 
updates.
It’s easy and you get pretty immediate 
feedback ☺
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Convergence

Source: http://ruder.io/optimizing-gradient-descent/
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http://ruder.io/optimizing-gradient-descent/


Convergence

Source: http://ruder.io/optimizing-gradient-descent/
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http://ruder.io/optimizing-gradient-descent/


Convergence

Source: https://github.com/Jaewan-Yun/optimizer-visualization
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https://github.com/Jaewan-Yun/optimizer-visualization


Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
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SECOND 
DERIVATIVE

𝒇:ℝ → ℝ
ⅆ𝑓 𝑥

ⅆ𝑥

𝒇:ℝ𝑚 → ℝ 𝛻𝒙𝑓 𝒙

𝒇:ℝ𝑚 → ℝ𝑛 𝐉 ∈ ℝ𝑛 ×𝑚

𝒇:ℝ𝑚 → ℝ 𝐇 ∈ ℝ𝑚×𝑚

ⅆ𝑓 𝒙

ⅆ𝑥1
,
ⅆ𝑓 𝒙

ⅆ𝑥2



Newton’s Method
• Approximate our function by a second-order Taylor 

series expansion

55

More info: 
https://en.wikipedia.org/wiki/Taylor_series
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First derivative Second derivative (curvature)

𝐿 𝜽 ≈ 𝐿 𝜽0 + 𝜽 − 𝜽0
𝑇𝜵𝜽𝐿 𝜽0 +

1

2
𝜽 − 𝜽0

𝑇𝐇 𝜽 − 𝜽0

https://en.wikipedia.org/wiki/Taylor_series


Newton’s Method
• Differentiate and equate to zero
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SGD

We got rid of the learning rate!

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿 𝜽𝑘 , 𝐱𝒊 , 𝐲𝒊

Update step𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽



Newton’s Method
• Differentiate and equate to zero
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Update step

Parameters of a 
network (millions)

Number of 
elements in the 

Hessian

Computational 
complexity of ‘inversion’ 

per iteration

𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽



Newton’s Method
• Gradient Descent (green)

• Newton’s method exploits 
the curvature to take a 
more direct route
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Source: https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

I2DL: Prof. Dai

https://en.wikipedia.org/wiki/Newton's_method_in_optimization


Newton’s Method

59

Can you apply Newton’s 
method for linear regression? 
What do you get as a result?
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𝐽 𝜽 = 𝐲 − 𝐗𝛉 𝑇 𝐲 − 𝐗𝛉



BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS
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𝜽∗ = 𝜽0 − 𝐇−1𝛻𝜽𝐿 𝜽



Gauss-Newton
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• 𝑥𝑘+1 = 𝑥𝑘 −𝐻𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘)

– ‘true’ 2nd derivatives are often hard to obtain (e.g., 
numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• Gauss-Newton (GN): 
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is 
unstable):

2 𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Solve for delta vector



Levenberg
• Levenberg

– “damped” version of Gauss-Newton:
– 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝐼 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– The damping factor 𝜆 is adjusted in each iteration ensuring:
𝑓 𝑥𝑘 > 𝑓(𝑥𝑘+1)

• if the equation is not fulfilled increase 𝜆
• →Trust region

• → “Interpolation” between Gauss-Newton (small 𝜆) and 
Gradient Descent (large 𝜆)
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Tikhonov
regularization



Levenberg-Marquardt
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• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ ⅆ𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale 
each component of the gradient according to the 
curvature.
• Avoids slow convergence in components with a small 

gradient



Which, What, and When?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full 
batch updates (doesn’t work well for minibatches!!)

This practically never happens for DL
Theoretically, it would be nice though due to fast 

convergence
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General Optimization

• Linear Systems (Ax = b)
– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear (gradient-based)
– Newton, Gauss-Newton, LM, (L)BFGS ← second 

order
– Gradient Descent, SGD ← first order

• Others
– Genetic algorithms, MCMC, Metropolis-Hastings, etc.
– Constrained and convex solvers (Langrage, ADMM, Primal-

Dual, etc.)

65I2DL: Prof. Dai



Please Remember!
• Think about your problem and optimization at hand 

• SGD is specifically designed for minibatch 

• When you can, use 2nd order method → it’s just faster

• GD or SGD is not a way to solve a linear system!
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Next Lecture
• This week:

– Check exercises
– Check office hours ☺

• Next lecture 
– Training Neural networks
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See you next week ☺
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Some References to SGD Updates
• Goodfellow et al. “Deep Learning” (2016), 

– Chapter 8: Optimization
• Bishop “Pattern Recognition and Machine Learning” 

(2006), 
– Chapter 5.2: Network training (gradient descent)
– Chapter 5.4: The Hessian Matrix (second order methods)

• https://ruder.io/optimizing-gradient-descent/index.html
• PyTorch Documetation (with further readings)

– https://pytorch.org/docs/stable/optim.html
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https://ruder.io/optimizing-gradient-descent/index.html
https://pytorch.org/docs/stable/optim.html

