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Lecture 5 Recap
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Gradient Descent for Neural Networks
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Stochastic Gradient Descent (SGD)
𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽

𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

:

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch
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Gradient Descent with Momentum
𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 + 𝛻𝜽𝐿(𝜽

𝑘)

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅ 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel
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RMSProp
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Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be 
large
- Division in X-Direction will be 
small

(Uncentered) variance of gradients 
→ second momentum

Can increase learning rate!
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Adam
• Combines Momentum and RMSProp

𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘
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• 𝒎𝑘+1 and 𝒗𝑘+1 are initialized with zero 
→ bias towards zero
→ Typically, bias-corrected moment updates

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1 − 𝛽1
𝑘+1

ෝ𝒗𝑘+1 =
𝒗𝑘+1

1 − 𝛽2
𝑘+1 𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅

ෝ𝒎𝑘+1

ෝ𝒗𝑘+1+𝜖



Training Neural Nets
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Learning Rate: Implications

• What if too high?

• What if too low?

Source: http://cs231n.github.io/neural-networks-3/
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Learning Rate  

Need high learning rate when far away

Need low learning rate when close
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Learning Rate Decay

• 𝛼 =
1

1+𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒∗𝑒𝑝𝑜𝑐ℎ
⋅ 𝛼0

– E.g., 𝛼0 = 0.1, 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 = 1.0

→ Epoch 0: 0.1

→ Epoch 1: 0.05

→ Epoch 2: 0.033

→ Epoch 3: 0.025

... 0
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Learning Rate over Epochs
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Learning Rate Decay
Many options:
• Step decay 𝛼 = 𝛼 − 𝑡 ⋅ 𝛼 (only every n steps)

– T is decay rate (often 0.5)

• Exponential decay 𝛼 = 𝑡𝑒𝑝𝑜𝑐ℎ ⋅ 𝛼0
– t is decay rate (t < 1.0)

• 𝛼 =
𝑡

𝑒𝑝𝑜𝑐ℎ
⋅ 𝑎0

– t is decay rate 

• Etc.
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Training Schedule
Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs
• How? 

– Trial and error (the hard way)
– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.
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Basic Recipe for Training

• Given a dataset with labels
– {𝑥𝑖 , 𝑦𝑖}

• 𝑥𝑖 is the 𝑖𝑡ℎ training image, with label 𝑦𝑖
• Often dim 𝑥 ≫ dim(𝑦) (e.g., for classification)
• 𝑖 is often in the 100-thousands or millions

– Take network 𝑓 and its parameters 𝑤, 𝑏
– Use SGD (or variation) to find optimal parameters 𝑤, 𝑏

• Gradients from backpropagation
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Gradient Descent on Train Set
• Given large train set with (𝑛) training samples {𝒙𝑖 , 𝒚𝑖}

– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters 

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

• Extremely expensive to compute
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Learning
• Learning means generalization to unknown dataset

– (So far no ‘real’ learning)
– i.e., train on known dataset → test with optimized 

parameters on unknown dataset

• Basically, we hope that based on the train set, the 
optimized parameters will give similar results on 
different data (i.e., test data)
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Learning
• Training set (‘train’):

– Use for training your neural network  

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING
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Learning
• Typical splits

– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average minibatch error
– Typically take subset of validation every n iterations
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Basic Recipe for Machine Learning
• Split your data

Find your hyperparameters

20%

train testvalidation

20%60%
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Basic Recipe for Machine Learning
• Split your data

20%

train testvalidation

20%60%

Ground truth error …... 1%

Training set error   ….... 5%

Val/test set error  ….... 8%

Bias 
(underfitting)
Variance 
(overfitting)
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Basic Recipe for Machine Learning

Credits: A. Ng
Done
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Over- and Underfitting

Underfitted Appropriate Overfitted

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017
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Over- and Underfitting

Source: https://srdas.github.io/DLBook/ImprovingModelGeneralization.html
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Learning Curves
• Training graphs

- Accuracy - Loss
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Learning Curves
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Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Overfitting Curves

t
e
s
t

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

Val
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Other Curves

Underfitting (loss still decreasing) Validation Set is easier than Training set
Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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To Summarize
• Underfitting

– Training and validation losses decrease even at the end 
of training

• Overfitting
– Training loss decreases and validation loss increases

• Ideal Training
– Small gap between training and validation loss, and both 

go down at same rate (stable without fluctuations).
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To Summarize
• Bad Signs

– Training error not going down
– Validation error not going down
– Performance on validation better than on training set
– Tests on train set different than during training

• Bad Practice 
– Training set contains test data
– Debug algorithm on test data
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Never touch during 
development or 

training



Hyperparameters
• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture) 
• Batch size
• …
• Overall: 

learning setup + optimization = hyperparameters
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Hyperparameter Tuning
• Methods:

– Manual search: 
• most common ☺

– Grid search (structured, for ‘real’ applications)
• Define ranges for all parameters spaces and 

select points
• Usually pseudo-uniformly distributed
→ Iterate over all possible configurations

– Random search:
Like grid search but one picks points at random 
in the predefined ranges
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How to Start
• Start with single training sample

– Check if output correct
– Overfit → train accuracy should be 100% 

because input just memorized

• Increase to handful of samples (e.g., 4)
– Check if input is handled correctly

• Move from overfitting to more samples
– 5, 10, 100, 1000, …
– At some point, you should see generalization
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Find a Good Learning Rate
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Karpathy’s constant
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Karpathy’s constant
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Find a Good Learning Rate
• Use all training data with small weight decay
• Perform initial loss sanity check e.g., log(𝐶) for 

softmax with 𝐶 classes
• Find a learning rate that makes 

the loss drop significantly 
(exponentially) within 
100 iterations

• Good learning rates to try: 
1e-1, 1e-2, 1e-3, 1e-4
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Training time

Loss



Coarse Grid Search
• Choose a few values of learning rate and weight 

decay around what worked from 
• Train a few models for a few epochs.
• Good weight decay to try: 1e-4, 1e-5, 0
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Refine Grid
• Pick best models found with coarse grid.
• Refine grid search around these models.
• Train them for longer (10-20 epochs) without learning 

rate decay
• Study loss curves <- most important debugging tool!
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Timings
• How long does each iteration take?

– Get precise timings!
– If an iteration exceeds 500ms, things get dicey

• Look for bottlenecks
– Dataloading: smaller resolution, 

compression, train from SSD
– Backprop

• Estimate total time
– How long until you see some pattern?
– How long till convergence?
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Network Architecture
• Frequent mistake: “Let’s use this super big network, 

train for two weeks and we see where we stand.” 
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• Instead: start with simplest 
network possible
– Rule of thumb divide #layers 

you started with by 5

• Get debug cycles down
– Ideally, minutes



Debugging
• Use train/validation/test curves

– Evaluation needs to be consistent
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training size, and now 

I also trained 5 days longer. Now it’s better, but why?”

• Visualize input, prediction, ground truth
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Common Mistakes in Practice
• Did not overfit to single batch first
• Forgot to toggle train/eval mode for network

– Check later when we talk about dropout…

• Forgot to call .zero_grad() (in PyTorch) before calling 
.backward()

• Passed softmaxed outputs to a loss function that 
expects raw logits
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Tensorboard: 
Visualization in 

Practice
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Tensorboard: Compare Train/Val Curves
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Tensorboard: Compare Different Runs
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Tensorboard: Visualize Model 
Predictions
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Tensorboard: Visualize Model 
Predictions
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Tensorboard: Compare 
Hyperparameters
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Next Lecture

• Next lecture
– More about training neural networks: output functions, loss 

functions, activation functions

• Check the exercises ☺
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See you next week ☺
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