
Training Neural
Networks

I2DL: Prof. Dai 1

Lecture 5 Recap

I2DL: Prof. Dai 2

Gradient Descent for Neural Networks

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

ො𝑦0

ො𝑦1

𝑦0

𝑦1

ො𝑦𝑖 = 𝐴(𝑏1,𝑖 +

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)

ℎ𝑗 = 𝐴(𝑏0,𝑗 +

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

Loss function
𝐿𝑖 = ො𝑦𝑖 − 𝑦𝑖

2

Just simple:
𝐴 𝑥 = max(0, 𝑥)

𝛻𝑾,𝒃𝑓 𝒙,𝒚 (𝑾) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

I2DL: Prof. Dai 3

Stochastic Gradient Descent (SGD)
𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝛻𝜽𝐿(𝜽

𝑘 , 𝒙{1..𝑚}, 𝒚{1..𝑚})

𝛻𝜽𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜽𝐿𝑖

:

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current minibatch

Gradient for the 𝑘-th minibatch

I2DL: Prof. Dai 4

Gradient Descent with Momentum
𝒗𝑘+1 = 𝛽 ⋅ 𝒗𝑘 + 𝛻𝜽𝐿(𝜽

𝑘)

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅ 𝒗𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝒗𝑘 is vector-valued!

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel

I2DL: Prof. Dai 5

RMSProp

X-direction Small gradients

Y
-D

ire
ct

io
n

La
rg

e
g

ra
d

ie
nt

s

Source: A. Ng

𝒔𝑘+1 = 𝛽 ⋅ 𝒔𝑘 + (1 − 𝛽)[𝛻𝜽𝐿 ∘ 𝛻𝜽𝐿]

𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅
𝛻𝜽𝐿

𝒔𝑘+1 + 𝜖

We’re dividing by square gradients:
- Division in Y-Direction will be
large
- Division in X-Direction will be
small

(Uncentered) variance of gradients
→ second momentum

Can increase learning rate!

I2DL: Prof. Dai 6

Adam
• Combines Momentum and RMSProp

𝒎𝑘+1 = 𝛽1 ⋅ 𝒎
𝑘 + 1 − 𝛽1 𝛻𝜽𝐿 𝜽𝑘 𝒗𝑘+1 = 𝛽2 ⋅ 𝒗

𝑘 + (1 − 𝛽2)[𝛻𝜽𝐿 𝜽𝑘 ∘ 𝛻𝜽𝐿 𝜽𝑘

I2DL: Prof. Dai 7

• 𝒎𝑘+1 and 𝒗𝑘+1 are initialized with zero
→ bias towards zero
→ Typically, bias-corrected moment updates

ෝ𝒎𝑘+1 =
𝒎𝑘+1

1 − 𝛽1
𝑘+1

ෝ𝒗𝑘+1 =
𝒗𝑘+1

1 − 𝛽2
𝑘+1 𝜽𝑘+1 = 𝜽𝑘 − 𝛼 ⋅

ෝ𝒎𝑘+1

ෝ𝒗𝑘+1+𝜖

Training Neural Nets

I2DL: Prof. Dai 8

Learning Rate: Implications

• What if too high?

• What if too low?

Source: http://cs231n.github.io/neural-networks-3/

I2DL: Prof. Dai 9

http://cs231n.github.io/neural-networks-3/

Learning Rate

Need high learning rate when far away

Need low learning rate when close

I2DL: Prof. Dai 10

Learning Rate Decay

• 𝛼 =
1

1+𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒∗𝑒𝑝𝑜𝑐ℎ
⋅ 𝛼0

– E.g., 𝛼0 = 0.1, 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 = 1.0

→ Epoch 0: 0.1

→ Epoch 1: 0.05

→ Epoch 2: 0.033

→ Epoch 3: 0.025

... 0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Learning Rate over Epochs

I2DL: Prof. Dai 11

Learning Rate Decay
Many options:
• Step decay 𝛼 = 𝛼 − 𝑡 ⋅ 𝛼 (only every n steps)

– T is decay rate (often 0.5)

• Exponential decay 𝛼 = 𝑡𝑒𝑝𝑜𝑐ℎ ⋅ 𝛼0
– t is decay rate (t < 1.0)

• 𝛼 =
𝑡

𝑒𝑝𝑜𝑐ℎ
⋅ 𝑎0

– t is decay rate

• Etc.
I2DL: Prof. Dai 12

Training Schedule
Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs
• How?

– Trial and error (the hard way)
– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.

I2DL: Prof. Dai 13

Basic Recipe for Training

• Given a dataset with labels
– {𝑥𝑖 , 𝑦𝑖}

• 𝑥𝑖 is the 𝑖𝑡ℎ training image, with label 𝑦𝑖
• Often dim 𝑥 ≫ dim(𝑦) (e.g., for classification)
• 𝑖 is often in the 100-thousands or millions

– Take network 𝑓 and its parameters 𝑤, 𝑏
– Use SGD (or variation) to find optimal parameters 𝑤, 𝑏

• Gradients from backpropagation

I2DL: Prof. Dai 14

Gradient Descent on Train Set
• Given large train set with (𝑛) training samples {𝒙𝑖 , 𝒚𝑖}

– Let’s say 1 million labeled images
– Let’s say our network has 500k parameters

• Gradient has 500k dimensions
• 𝑛 = 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

• Extremely expensive to compute

I2DL: Prof. Dai 15

Learning
• Learning means generalization to unknown dataset

– (So far no ‘real’ learning)
– i.e., train on known dataset → test with optimized

parameters on unknown dataset

• Basically, we hope that based on the train set, the
optimized parameters will give similar results on
different data (i.e., test data)

I2DL: Prof. Dai 16

Learning
• Training set (‘train’):

– Use for training your neural network

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING

I2DL: Prof. Dai 17

Learning
• Typical splits

– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average minibatch error
– Typically take subset of validation every n iterations

I2DL: Prof. Dai 18

Basic Recipe for Machine Learning
• Split your data

Find your hyperparameters

20%

train testvalidation

20%60%

I2DL: Prof. Dai 19

Basic Recipe for Machine Learning
• Split your data

20%

train testvalidation

20%60%

Ground truth error …... 1%

Training set error ….... 5%

Val/test set error ….... 8%

Bias
(underfitting)
Variance
(overfitting)

E
xa

m
p

le
 s

ce
na

rio

I2DL: Prof. Dai 20

Basic Recipe for Machine Learning

Credits: A. Ng
Done

I2DL: Prof. Dai 21

Over- and Underfitting

Underfitted Appropriate Overfitted

Source: Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

I2DL: Prof. Dai 22

Over- and Underfitting

Source: https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

I2DL: Prof. Dai 23

https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Learning Curves
• Training graphs

- Accuracy - Loss

I2DL: Prof. Dai 24

Learning Curves

t
e
s
t

val

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

I2DL: Prof. Dai 25

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

Overfitting Curves

t
e
s
t

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

Val

I2DL: Prof. Dai 26

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

Other Curves

Underfitting (loss still decreasing) Validation Set is easier than Training set
Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

I2DL: Prof. Dai 27

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

To Summarize
• Underfitting

– Training and validation losses decrease even at the end
of training

• Overfitting
– Training loss decreases and validation loss increases

• Ideal Training
– Small gap between training and validation loss, and both

go down at same rate (stable without fluctuations).

I2DL: Prof. Dai 28

To Summarize
• Bad Signs

– Training error not going down
– Validation error not going down
– Performance on validation better than on training set
– Tests on train set different than during training

• Bad Practice
– Training set contains test data
– Debug algorithm on test data

I2DL: Prof. Dai 29

Never touch during
development or

training

Hyperparameters
• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture)
• Batch size
• …
• Overall:

learning setup + optimization = hyperparameters

I2DL: Prof. Dai 30

Hyperparameter Tuning
• Methods:

– Manual search:
• most common ☺

– Grid search (structured, for ‘real’ applications)
• Define ranges for all parameters spaces and

select points
• Usually pseudo-uniformly distributed
→ Iterate over all possible configurations

– Random search:
Like grid search but one picks points at random
in the predefined ranges

I2DL: Prof. Dai 31

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Se
co

n
d

 P
ar

am
et

er

First Parameter

Grid search

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Se
co

n
d

 P
ar

am
et

er

First Parameter

Random search

How to Start
• Start with single training sample

– Check if output correct
– Overfit → train accuracy should be 100%

because input just memorized

• Increase to handful of samples (e.g., 4)
– Check if input is handled correctly

• Move from overfitting to more samples
– 5, 10, 100, 1000, …
– At some point, you should see generalization

I2DL: Prof. Dai 32

…

Find a Good Learning Rate

I2DL: Prof. Dai 33

Karpathy’s constant

I2DL: Prof. Dai 34

Karpathy’s constant

I2DL: Prof. Dai 35

Find a Good Learning Rate
• Use all training data with small weight decay
• Perform initial loss sanity check e.g., log(𝐶) for

softmax with 𝐶 classes
• Find a learning rate that makes

the loss drop significantly
(exponentially) within
100 iterations

• Good learning rates to try:
1e-1, 1e-2, 1e-3, 1e-4

I2DL: Prof. Dai 36

Training time

Loss

Coarse Grid Search
• Choose a few values of learning rate and weight

decay around what worked from
• Train a few models for a few epochs.
• Good weight decay to try: 1e-4, 1e-5, 0

I2DL: Prof. Dai 37

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Se
co

n
d

 P
ar

am
et

er

First Parameter

Grid search

Refine Grid
• Pick best models found with coarse grid.
• Refine grid search around these models.
• Train them for longer (10-20 epochs) without learning

rate decay
• Study loss curves <- most important debugging tool!

I2DL: Prof. Dai 38

Timings
• How long does each iteration take?

– Get precise timings!
– If an iteration exceeds 500ms, things get dicey

• Look for bottlenecks
– Dataloading: smaller resolution,

compression, train from SSD
– Backprop

• Estimate total time
– How long until you see some pattern?
– How long till convergence?

I2DL: Prof. Dai 39

Network Architecture
• Frequent mistake: “Let’s use this super big network,

train for two weeks and we see where we stand.”

I2DL: Prof. Dai 40

• Instead: start with simplest
network possible
– Rule of thumb divide #layers

you started with by 5

• Get debug cycles down
– Ideally, minutes

Debugging
• Use train/validation/test curves

– Evaluation needs to be consistent
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training size, and now

I also trained 5 days longer. Now it’s better, but why?”

• Visualize input, prediction, ground truth

I2DL: Prof. Dai 41

Common Mistakes in Practice
• Did not overfit to single batch first
• Forgot to toggle train/eval mode for network

– Check later when we talk about dropout…

• Forgot to call .zero_grad() (in PyTorch) before calling
.backward()

• Passed softmaxed outputs to a loss function that
expects raw logits

I2DL: Prof. Dai 42

Tensorboard:
Visualization in

Practice

I2DL: Prof. Dai 43

Tensorboard: Compare Train/Val Curves

t
e
s
t

I2DL: Prof. Dai 44

Tensorboard: Compare Different Runs

t
e
s
t

I2DL: Prof. Dai 45

Tensorboard: Visualize Model
Predictions

t
e
s
t

I2DL: Prof. Dai 46

Tensorboard: Visualize Model
Predictions

t
e
s
t

I2DL: Prof. Dai 47

Tensorboard: Compare
Hyperparameters

t
e
s
t

I2DL: Prof. Dai 48

Next Lecture

• Next lecture
– More about training neural networks: output functions, loss

functions, activation functions

• Check the exercises ☺

I2DL: Prof. Dai 49

See you next week ☺

I2DL: Prof. Dai 50

References
• Goodfellow et al. “Deep Learning” (2016),

– Chapter 6: Deep Feedforward Networks

• Bishop “Pattern Recognition and Machine Learning” (2006),
– Chapter 5.5: Regularization in Network Nets

• http://cs231n.github.io/neural-networks-1/

• http://cs231n.github.io/neural-networks-2/

• http://cs231n.github.io/neural-networks-3/

I2DL: Prof. Dai 51

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

