
Lecture 7 Recap
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Regression Losses: L2 vs L1
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• L2 Loss: 

– 𝐿2 = σ𝑖=1
𝑛 𝑦𝑖 − 𝑓 𝑥𝑖

2

– Sum of squared 
differences (SSD)

– Prone to outliers
– Compute-efficient 

(optimization)
– Optimum is the mean

• L1 Loss:
– 𝐿1 = σ𝑖=1

𝑛 |𝑦𝑖 − 𝑓(𝑥𝑖)|

– Sum of absolute 
differences

– Robust
– Costly to compute

– Optimum is the median 



Binary Classification: Sigmoid
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0

Can be 
interpreted as 
a probability

1
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1 + 𝑒−σ𝜃𝑖𝑥𝑖
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1

1 + 𝑒−𝑠
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Softmax Formulation
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• What if we have multiple classes?

Softmax

𝑝(𝑦 = 1|𝒙, 𝜽) =
𝑒𝒔𝟏

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑

𝑝(𝑦 = 3|𝒙, 𝜽) =
𝑒𝒔𝟑

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑

𝑥0

𝑥1

𝑥2

Σ

Σ

𝑝(𝑦 = 2|𝒙, 𝜽) =
𝑒𝒔𝟐

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑Σ

𝑠1

𝑠2

𝑠3

Scores 
for each class

Probabilities 
for each class



Example: Hinge vs Cross-Entropy
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− Cross Entropy *always* wants to improve! (loss never 0)
− Hinge Loss saturates.

− ln 𝑒5

𝑒5+𝑒−20+𝑒−20

= 2 ∗ 10−11

Given the following scores for 𝒙𝑖 :

𝑠 = [5, −3, 2]

𝑠 = [5, 10, 10]

𝑠 = [5, −20, −20]

𝑦𝑖 = 0

Model 1

Model 2

Model 3

Hinge loss: 
max(0, −3 − 5 + 1) +
max 0, 2 − 5 + 1 =0

max(0, 10 − 5 + 1) +
max 0, 10 − 5 + 1 =12

max(0, −20 − 5 + 1) +
max 0,−20 − 5 + 1 =0

Cross Entropy loss: 

− ln 𝑒5

𝑒5+𝑒−3+𝑒2
= 0.05

− ln 𝑒5

𝑒5+𝑒10+𝑒10
= 5.70

Hinge Loss: 𝐿𝑖 = σ𝑘≠𝑦𝑖
max(0, 𝑠𝑘 − 𝑠𝑦𝑖 + 1)

Cross Entropy : 𝐿𝑖 = − log(
𝑒
𝑠𝑦𝑖

σ𝑘 𝑒
𝑠𝑘
)



Sigmoid Activation
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Saturated neurons kill 
the gradient flow

Forward 𝜎 𝑠 =
1

1 + 𝑒−𝑠

𝜕𝐿

𝜕𝑤
=

𝜕𝑠

𝜕𝑤

𝜕𝐿

𝜕𝑠
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=
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TanH Activation

Zero-centered

Still saturates
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[LeCun et al. 1991] Improving Generalization Performance in Character Recognition



Rectified Linear Units (ReLU)

Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU
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[Krizhevsky et al. NeurIPS 2012] ImageNet Classification with Deep Convolutional Neural Networks



Quick Guide
• Sigmoid is not really used.

• ReLU is the standard choice. 

• Second choice are the variants of ReLU or Maxout.

• Recurrent nets will require TanH or similar.
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Initialization is Extremely Important!
• Optimum
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Not guaranteed to 
reach the optimum

Initialization

𝑥∗ = argmin 𝑓(𝑥)



Xavier/Kaiming Initialization
• How to ensure the variance of the output is the same 

as the input?
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𝑛𝑉𝑎𝑟(𝑤 𝑉𝑎𝑟 𝑥 )

= 1

𝑉𝑎𝑟 𝑤 =
1

𝑛



ReLU Kills Half of the Data
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It makes a huge difference!

[He et al., ICCV’15] He Initialization

𝑉𝑎𝑟 𝑤 =
2

𝑛



Lecture 8
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Data Augmentation

14I2DL: Prof. Dai



Data Pre-Processing
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For images subtract the mean image (AlexNet) or per-channel mean (VGG-Net)



Data Augmentation
• A classifier has to be invariant to a wide variety of 

transformations
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Pose                     Appearance                   Illumination
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Data Augmentation
• A classifier has to be invariant to a wide variety of 

transformations

• Helping the classifier: synthesize data simulating 
plausible transformations
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Data Augmentation

19I2DL: Prof. Dai [Krizhevsky et al., NIPS’12] ImageNet



Data Augmentation: Brightness
• Random brightness and contrast changes

20I2DL: Prof. Dai [Krizhevsky et al., NIPS’12] ImageNet



Data Augmentation: Random Crops
• Training: random crops

– Pick a random L in [256,480]
– Resize training image, short side L
– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales
– 10 fixed crops of 224x224: (4 corners + 1 center ) ×2 flips

21I2DL: Prof. Dai [Krizhevsky et al., NIPS’12] ImageNet



Data Augmentation: Advanced 
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Muller et al., Trivial Augment, ICCV 2021Cubuk et al., RandAugment, CVPRW 2020



Data Augmentation
• When comparing two networks make sure to use the 

same data augmentation!

• Consider data augmentation a part of your network 
design
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Advanced 
Regularization
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L2 regularization, also (wrongly) called weight 
decay

• L2 regularization

• Penalizes large weights
• Improves generalization
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Learning rate Gradient Gradient of L2-regularization

Θ 0 Θ/2 Θ/2

Θ𝑘+1 = Θ𝑘 − 𝜖𝛻Θ Θ𝑘 , 𝑥, 𝑦 − 𝜆𝜃𝑘



L2 regularization, also (wrongly) called weight 
decay

• Weight decay regularization

• Equivalent to L2 regularization in GD, but not in Adam.
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Learning rate of weight 
decay

Learning rate of the 
optimizer

Loshchilov and Hutter, Decoupled Weight Decay 
Regularization, ICLR 2019

Θ𝑘+1 = (1 − 𝜆)Θ𝑘−𝛼𝛻𝑓𝑘 Θ𝑘



Early Stopping
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Overfitting



Bagging and Ensemble Methods 
• Train multiple models and average their results

• E.g., use a different algorithm for optimization or 
change the objective function / loss function.

• If errors are uncorrelated, the expected combined 
error will decrease linearly with the ensemble size
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Bagging and Ensemble Methods 
• Bagging: uses k different datasets (or SGD/init noise)
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Training Set 1 Training Set 2 Training Set 3

Image Source: [Srivastava et al., JMLR’14] Dropout



Dropout
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Dropout
• Disable a random set of neurons (typically 50%)

32I2DL: Prof. Dai [Srivastava et al., JMLR’14] Dropout

F
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Dropout: Intuition
• Using half the network = half capacity
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Furry

Has two 
eyes

Has a tail

Has paws

Has two ears

Redundant 
representations

[Srivastava et al., JMLR’14] Dropout



Dropout: Intuition
• Using half the network = half capacity

– Redundant representations
– Base your scores on more features

• Consider it as a model ensemble

34I2DL: Prof. Dai [Srivastava et al., JMLR’14] Dropout



Dropout: Intuition
• Two models in one
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Model 1

Model 2

[Srivastava et al., JMLR’14] Dropout



Dropout: Intuition
• Using half the network = half capacity

– Redundant representations
– Base your scores on more features

• Consider it as two models in one
– Training a large ensemble of models, each on different 

set of data (mini-batch) and with SHARED parameters
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Reducing co-adaptation between neurons

[Srivastava et al., JMLR’14] Dropout



Dropout: Test Time
• All neurons are “turned on” – no dropout

37I2DL: Prof. Dai [Srivastava et al., JMLR’14] Dropout

Conditions at train and test 
time are not the same

PyTorch: model.train() and model.eval()



Dropout: Test Time

38I2DL: Prof. Dai [Srivastava et al., JMLR’14] Dropout

• Test:

• Train:

Weight scaling 
inference rule

𝑧 = (𝜃1𝑥1 + 𝜃2𝑥2) ∙ 𝑝

𝐸 𝑧 =
1

4
(𝜃10 + 𝜃20

+ 𝜃1𝑥1 + 𝜃20
+ 𝜃10 + 𝜃2𝑥2
+ 𝜃1𝑥1 + 𝜃2𝑥2)

=
1

2
(𝜃1𝑥1 + 𝜃2𝑥2)

𝑥2𝑥1

𝜃2

𝑧

𝜃1

Dropout
probability
𝑝 = 0.5



Dropout: Before
• Efficient bagging method with parameter sharing

• Try it!

• Dropout reduces the effective capacity of a model, 
but needs more training time

• Efficient regularization method, can be used with L2

39I2DL: Prof. Dai [Srivastava et al., JMLR’14] Dropout



Dropout: Nowadays
• Usually does not work well when combined with 

batch-norm.
• Training takes a bit longer, usually 1.5x
• But, can be used for uncertainty estimation.
• Monte Carlo dropout (Yarin Gal and Zoubin

Ghahramani series of papers).
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Monte Carlo Dropout
• Neural networks are massively overconfident.
• We can use dropout to make the softmax 

probabilities more calibrated.
• Training: use dropout with a low p (0.1 or 0.2).
• Inference, run the same image multiple times (25-

100), and average the results. 
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Gal et al., Bayesian Convolutional Neural Networks with Bernoulli 
Approximate Variational Inference, ICLRW 2015
Gal and Ghahramani, Dropout as a Bayesian approximation, ICML 2016
Gal et al., Deep Bayesian Active Learning with Image Data, ICML 2017
Gal, Uncertainty in Deep Learning, PhD thesis 2017



Batch Normalization: 
Reducing Internal Covariate 

Shift
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Batch Normalization: 
Reducing Internal Covariate 

Shift

What is internal covariate shift, by the way?

43I2DL: Prof. Dai



Our Goal
• All we want is that our activations do not die out
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Batch Normalization
• Wish: Unit Gaussian activations (in our example)
• Solution: let’s do it
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D = num of features

N
 =

 m
in

i-
b

at
ch

 s
iz

e

Mean of your mini-batch 
examples over feature k

[Ioffe and Szegedy, PMLR’15] Batch Normalization

feature 1   …      feature k … 

ෝ𝒙 𝑘 =
𝒙 𝑘 − 𝐸 𝒙 𝑘

𝑉𝑎𝑟 𝒙 𝑘



Batch Normalization
• In each dimension of the features, you have a unit 

gaussian (in our example)

46I2DL: Prof. Dai [Ioffe and Szegedy, PMLR’15] Batch Normalization

Mean of your mini-batch 
examples over feature k

feature 1   …      feature k … 

D = num of features

N
 =

 m
in

i-
b

at
ch

 s
iz

e

Unit gaussian

ෝ𝒙 𝑘 =
𝒙 𝑘 − 𝐸 𝒙 𝑘

𝑉𝑎𝑟 𝒙 𝑘



Batch Normalization
• In each dimension of the features, you have a unit 

gaussian (in our example)

• For NN in general, BN normalizes the mean and 
variance of the inputs to your activation functions

47I2DL: Prof. Dai [Ioffe and Szegedy, PMLR’15] Batch Normalization



BN Layer
• A layer to be applied after Fully 

Connected (or Convolutional) layers and 
before non-linear activation functions

48I2DL: Prof. Dai [Ioffe and Szegedy, PMLR’15] Batch Normalization



Batch Normalization
• 1. Normalize

• 2. Allow the network to change the range
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These parameters will be 
optimized during backprop

Differentiable function so we 
can backprop through it….

[Ioffe and Szegedy, PMLR’15] Batch Normalization

ෝ𝒙 𝑘 =
𝒙 𝑘 − 𝐸 𝒙 𝑘

𝑉𝑎𝑟 𝒙 𝑘

𝒚 𝑘 = 𝛾 𝑘 ෝ𝒙(𝑘) + 𝛽 𝑘



Batch Normalization
• 1. Normalize

• 2. Allow the network to change the 
range
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backprop

The network can
learn to undo the 

normalization

[Ioffe and Szegedy, PMLR’15] Batch Normalization

𝛾 𝑘 = 𝑉𝑎𝑟 𝒙 𝑘

𝛽 𝑘 = 𝐸 𝒙 𝑘

ෝ𝒙 𝑘 =
𝒙 𝑘 − 𝐸 𝒙 𝑘

𝑉𝑎𝑟 𝒙 𝑘

𝒚 𝑘 = 𝛾 𝑘 ෝ𝒙(𝑘) + 𝛽 𝑘



Batch Normalization
• Ok to treat dimensions separately? 

Shown empirically that even if features are not 
correlated, convergence is still faster with this 
method

51I2DL: Prof. Dai [Ioffe and Szegedy, PMLR’15] Batch Normalization



BN: Train vs Test
• Train time: mean and variance is taken over the mini-

batch

• Test-time: what happens if we can just process one 
image at a time?
– No chance to compute a meaningful mean and variance
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ෝ𝒙 𝑘 =
𝒙 𝑘 − 𝐸 𝒙 𝑘

𝑉𝑎𝑟 𝒙 𝑘



BN: Train vs Test
Training: Compute mean and variance from mini-batch 
1,2,3 …

Testing: Compute mean and variance by running an 
exponentially weighted averaged across training mini-
batches. Use them as        and        .   
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𝜇𝑡𝑒𝑠𝑡𝜎𝑡𝑒𝑠𝑡
2

𝑉𝑎𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝛽𝑚 ∗ 𝑉𝑎𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + 1 − 𝛽𝑚 ∗ 𝑉𝑎𝑟𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ

𝜇𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝛽𝑚 ∗ 𝜇𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + (1 − 𝛽𝑚) ∗ 𝜇𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ

𝛽𝑚 : momentum (hyperparameter)



BN: What do you get?
• Very deep nets are much easier to train, more stable 

gradients

• A much larger range of hyperparameters works 
similarly when using BN

54I2DL: Prof. Dai [Ioffe and Szegedy, PMLR’15] Batch Normalization



BN: A Milestone

55I2DL: Prof. Dai [Wu and He, ECCV’18] Group Normalization



BN: Drawbacks

56I2DL: Prof. Dai [Wu and He, ECCV’18] Group Normalization



Other Normalizations

57I2DL: Prof. Dai [Wu and He, ECCV’18] Group Normalization



Other Normalizations
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Image size

Number of channels

Number of elements in the batch

[Wu and He, ECCV’18] Group Normalization



What We Know
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What do we know so far?
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W
id

th

Depth



What do we know so far?
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𝜎 𝑠 =
1

1 + 𝑒−𝑠

Σ
𝜃1

𝜃2

𝜃0

𝑠

𝑥0

𝑥1

𝑥2

Concept of a ‘Neuron’



What do we know so far?
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Activation Functions (non-linearities)

• Sigmoid: 𝜎 𝑥 =
1

(1+𝑒−𝑥)

• TanH: tanh 𝑥

• ReLU: max 0, 𝑥

• Leaky ReLU: max 0.1𝑥, 𝑥



What do we know so far?
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Backpropagation
𝑤0

𝑥0

𝑤1

𝑥1

𝑏



What do we know so far?

64I2DL: Prof. Dai

SGD Variations (Momentum, etc.)



What do we know so far?
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Dropout

Batch-Norm

Weight Regularization

Data Augmentation

Weight Initialization
(e.g., Kaiming)

e.g., 𝐿2-reg: 𝑅2 𝑾 = σ𝑖=1
𝑁 𝑤𝑖

2

ෝ𝒙 𝑘 =
𝒙 𝑘 − 𝐸 𝒙 𝑘

𝑉𝑎𝑟 𝒙 𝑘



Why not simply more layers?
• Neural nets with at least one hidden layer are universal function 

approximators.

• But generalization is another issue.

• Why not just go deeper and get better?
– No structure!!
– It is just brute force!
– Optimization becomes hard
– Performance plateaus / drops!

• We need more! More means CNNs, RNNs and eventually Transformers.
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See you next week!
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References
• Goodfellow et al. “Deep Learning” (2016), 

– Chapter 6: Deep Feedforward Networks

• Bishop “Pattern Recognition and Machine Learning” (2006), 
– Chapter 5.5: Regularization in Network Nets

• http://cs231n.github.io/neural-networks-1/

• http://cs231n.github.io/neural-networks-2/

• http://cs231n.github.io/neural-networks-3/
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