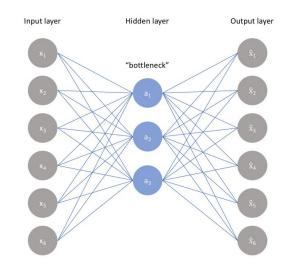


Introduction to Deep Learning (I2DL)

Exercise 8: Autoencoder

Today's Outline

- Exercise 07: Example Solutions
- Exercise 08
 - Batch Normalization & Dropout
 - Transfer Learning
 - Autoencoder



Exercise 7: Solutions

Leaderboard: Ex7

#	User	Score
1	u0787	64.30
2	u0120	59.87
3	u0807	56.85
4	u0146	56.59
5	u0746	55.47
6	u0638	55.40
7	u0766	54.34
8	u0676	54.19
9	u0853	54.16
10	u1490	54.13

Solution 1: 59,87%

```
self.model = nn.Sequential(
    nn.Linear(self.hparams["input_size"], self.hparams["nn_hidden_Layer1"]),
    nn.ReLU(),
    nn.Linear(self.hparams["nn_hidden_Layer1"], self.hparams["num_classes"]),
    nn.ReLU()
    )
```

Manual Transforms:

- Crop
- Gaussian filter
- Rotation
- Flip
- etc

```
split = {
    'train': 0.9,
    'val': 0.05,
    'test': 0.05
}
split_values = [v for k,v in split.items()]
assert sum(split_values) == 1.0
```

```
hparams["loading_method"] = 'Memory'
hparams['num_workers'] = 1
hparams['input_size'] = 3 * 32 * 32
hparams['batch_size'] = 1000
hparams['learning_rate'] = 5e-5
hparams['weight_decay'] = 1e-3
hparams['nn_hidden_Layer1'] = 1500
hparams['num_classes'] = 10
```

Solution 2: 56,85%

my_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std), transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip()])

```
# Note: you can change the splits if you want :)
split = {
    'train': 0.6,
    'val': 0.2,
    'test': 0.2
}
split_values = [v for k,v in split.items()]
assert sum(split_values) == 1.0
```

```
hparams = {
    "batch_size": 16,
    "learning_rate": 1e-3,
    "input_size": 3 * 32 * 32,
    "hidden_size": 512,
    "num_classes": 10,
    "num_workers": 2, # used
}
```

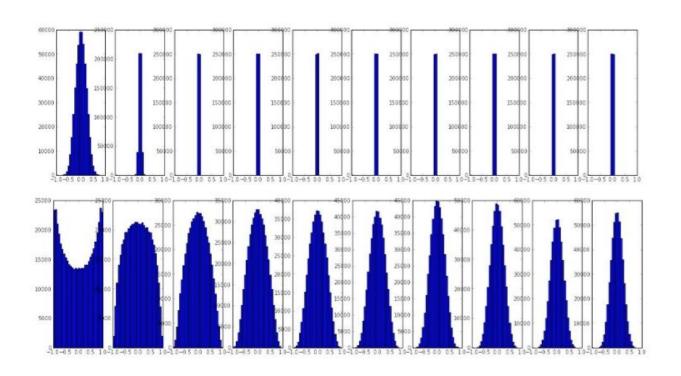
Summary

- Network: Linear + ReLU (Depth: 2-4)
- Initialization of Network Weights
- Optimizer: SGD or Adam, LR Scheduler
- Data Augmentation

Improve your training!

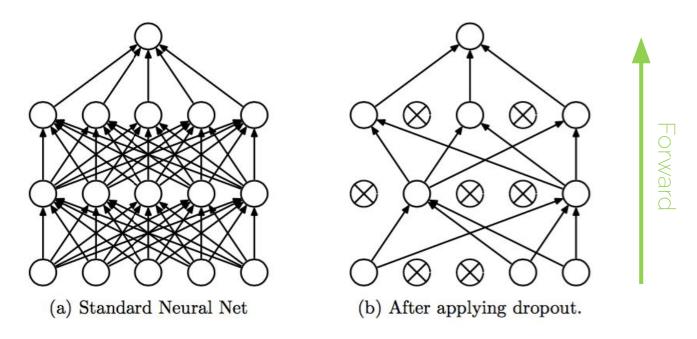
Batch Normalization

All we want is that our activations do not die out

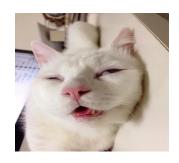


Dropout

• Using half the network = half capacity



Transfer Learning: Example Scenario



- Need to build a Cat classifier
- Only have a few images ~10 000

12DL: Prof. Dai

12

- Problem Statement:
 - Training a Deep Neural Network needs a lot of data
 - Collecting much data is expensive or just not possible
- Idea:
 - Some problems/ tasks are closely related
 - Can we transfer knowledge from one task to another?
 - Can we re-use (at least parts of) a pre-trained network for the new task?

Distribution

Large dataset

Distribution

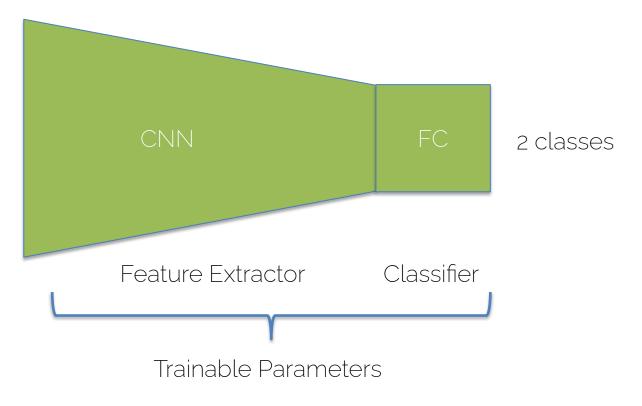
Small dataset

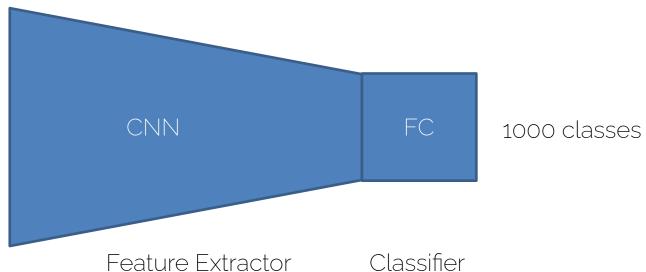
Use what has been learned for another setting

Coloring Legend:

Untrained

Trained





Coloring Legend:

Untrained

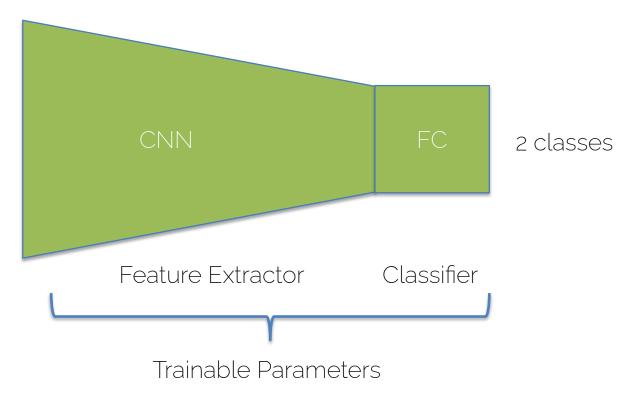
Trained

Coloring Legend:

U

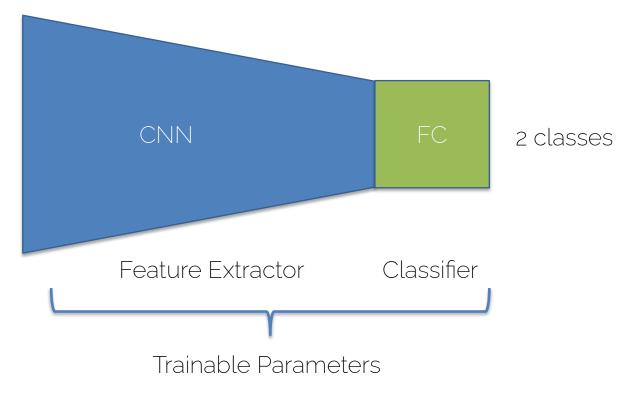
Untrained

Trained



Coloring Legend:

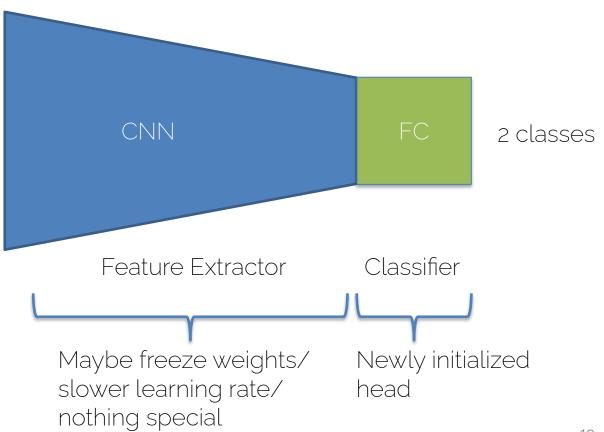
Trained



Coloring Legend:

Untrained

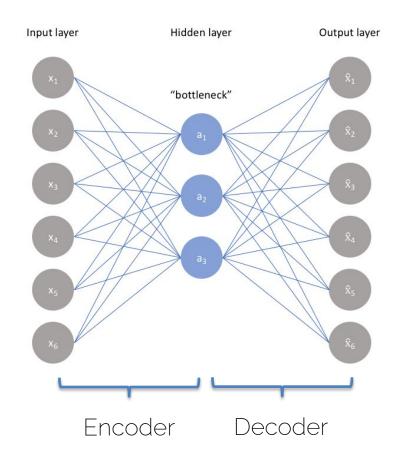
Trained



Application: Autoencoder

Autoencoder

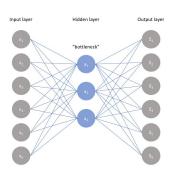
- Task
 - Reconstruct the input given a lower dimensional bottleneck
 - Loss: L1/L2 per pixel
- Actually need no labels!
- Without non-linearities: similar to PCA



Transfer Using an Autoencoder

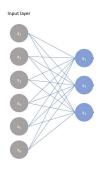
• Step 1:

 Train an Autoencoder on a large (maybe unlabelled) dataset very similar to your target dataset



• Step 2:

 Take pre-trained Autoencoder and use it as the first part of a classification architecture for your target dataset

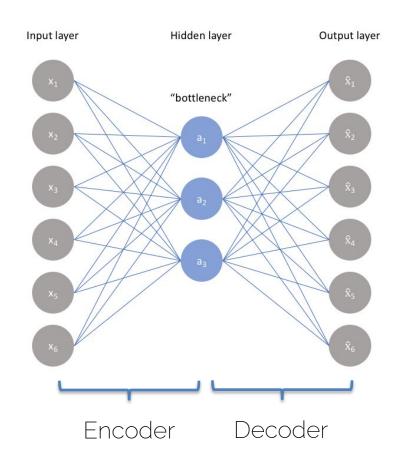


Exercise 8

Autoencoder

- Exercise Task:
 - 60 000 Images
 - Only 300 with labels

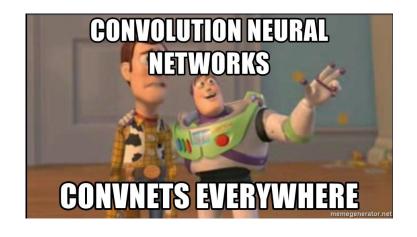
MNIST database



We get there...

No convolutions yet, but be prepared...

Next week will be the week.



But that means for now, we stick (one last time) with our linear layers.

Summary

- Tuesday 20.12.2022: Lecture 9
 - Convolutional Neural Networks 1
- Wednesday 21.12.2022 15:59:59 Exercise 8 Deadline
 - Autoencoder
- Christmas Break <u>**</u>
- Tuesday 10.01.2023: Lecture 10
- Thursday 12.01.2023: Exercise 9 Release

Good Luck & See you next time!