TUTi

INntroduction to Deep
[earning (I2DL)

Tutorial 9: Facial Keypoint Detection

Overview

« Convolutional Layers
- Recap
— Changes to Dropout & Batchnorm

+ EXercise 0Q: Facial Keypoint Detection
— Deadline: 18.01.2023 1559

—
0
\ .
100
| \
150 !
200
» &

Recap: Fully-Connected Layers

« Regular Neural Networks: Receive an input vector
and transform it through a series of hidden layers

« Fully connected layers. Each layer is made up of a
set of neurons, where each single neuron is
connected to all neurons in the previous layer

hidden layer 1 hidden layer 2

Convolutional Layers

« Assumption: Input to our Network are images

« Disadvantage: Normal sized images are more likely
to produce the right situation _K

75 weights
A\
o e A
O 75 weights 1000 3 billion weights
&
c O 75 weights 1000 A

3

1000 neuron layer
3 3 neuren layer Y

Can we reduce the number of weights in our
architecture?

Convolutional Layers

Assumption: Input to our Network are images

Advantage: \We can analyze the image by looking at

different region instead of looking at the whole
image

[dea: Sliding filter over the input image (convolution)
iNnstead of matrix multiplication

I%—} ;

Slide all spatial lo

and c mpt allo tpt 28
w/ © paddi gth
28x28 locatio

Convolutional Layers

« Assumption: Input to our Network are images

« Filters: Sliding window with the same filter
parameters to extract image features
- Concept of weight sharing
— Extract features independent of location

32

Let's apply “five™ filters,

32 each with different weights!

2DL: Prof. Dal

Fully Connected vs Convolution

rof. Dal http:.//graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L10%20-%20intro_to_deep_learning.pdf

Convolutional Layers. BatchNorm
and Dropout

Fully Connected vs Convolution

« Output Fully-Connected layer: One layer of neurons, independent
« Output Convolutional Layer: Neurons arranged in 3 dimensions

)

/‘
‘é’
R
o}o

9y
X
.t
N
ol
';\‘

‘\
.%%
& ®

output layer

input layer
hidden layer 1 hidden layer 2

2DL: Prof. Dal

http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L10%20-%20intro_to_deep_learning.pdf

Recap: Batch Normalization

« Batch norm for regular neural networks
— Input size (N, D)

- Compute minibatch mean and variance across N (l.e. we
compute mean/var for each feature dimension)

Batch Normalization for

Input: : N x D 1 A fully-connected networks
Hj = V Z Lij

T =l

Learnable params: | N X: N x D
1,8:D o5 = N > @iy —) Normalize ¢
i=1
qors D RN .
Intermediates: ' av 55 Big = Tig — Ky H,0: 1 x D
Xl .

Vo5 +e€ Y,B: 1 x D

Output: Yy N x D Yij = "l'jj‘z._l 4 "‘31' Y — Y (x—p) /0’+p

oDl Prof [http.//cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Spatial Batch Normalization

Batchnorm for convolutional NN = spatial batchnorm
— Input size (N, C, \W/, H)

— Compute minibatch mean and variance across N, W, H (i.e.
we compute mean/var for each channel C)

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)

X: NxCxHxW
Normalize ‘ J ‘ o
M,0: 1xCxlxl
Y,B: 1xCx1lxl
y = Y(x-M)/o+p

w

Prof Da http.//cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Dropout for convolutional layers

Regular Dropout: Deactivating specific neurons in the
networks (one neuron "looks™ at whole image)

Dropout Convolutional Layers: Standard neuron-
level dropout (L.e. randomly dropping a unit with a
certain probability) does not
improve performance in
convolutional NN

Variant: Spatial Dropout randomly
sets entire feature maps to zero

Standard Dropout Spatial Dropout

s -.-..-

L Prof. Dal

-Xercise Q.
Facial Keypoints Detection

12DL: Prof. Dai

-xercise 9. Facial Keypoints

INput:
(1, 96, 96) Image

- Grayscale, not RGB

Output:
coordinates of facial keypoints

(2, 15)

14

Submission: Metric

def evaluate_model(model, dataset):
model.evall()
criterion = torch.nn.MSELoss()
dataloader = Dataloader(dataset, batch_size=1, shuffle=False)
loss = @
for batch in dataloader:
image, keypoints = batch["image"], batch["keypoints"]
predicted_keypoints = model(image).view(-1,15,2)
loss += criterion(
torch.squeeze(keypoints),
torch.squeeze(predicted_keypoints)
).item()
return 1.8 / (2 * (loss/len(dataloader)))

print("Score:", evaluate_model({dummy_model, val_dataset))

Submission: Details

e Submission Start: 12.01.2023 13.00
 Submission Deadline: 18.01.2023 1559

 Your model's evaluation score is all that counts!
— Evaluation score: 1/ (2 " MSE)
— A score of at least 100 to pass the submission

TUTI
Good luck &

see you hext Week

©

